iA	$1 / 1 / A$																V/IIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$		The Periodic Table															He 2
1.01												Mi/	IVA	VA	V/A	V/IA	4.00
$\underset{3}{\mathrm{Li}}$	Be 4											B 5	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si 14	P	S	Cl 17	
22.99	24.31	\ldots	IVB	VB	V/B	V/IIS	V/igs	V/INB	V/IM	18	$1 / 8$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	$\mathbf{1 5 7 . 2 5}$	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	$\mathbf{1 6 8 . 9 3}$	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Formula and Constants:

$$
\begin{aligned}
C & =2.998 \times 10^{8} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1} \\
\mathrm{~h} & =6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} \\
\mathrm{~N} & =6.023 \times 10^{23} \mathrm{~mol}^{-1} \\
1 \mathrm{~nm} & =1 \times 10^{-9} \mathrm{~m} \\
1 \mathrm{~L} & =1 \times 10^{3} \mathrm{~mL}
\end{aligned}
$$

\square

	A general chemistry student found a chunk of metal in the basement of a friend's house. To figure out what it was, the student tried the following experiment. The student measured the mass of the metal to be 188.8 g . Then dropped the metal into a measuring cup and found that it displaced 17.8 mL of water. This metal is most likely: \qquad	Densities of Substance Water Aluminum Chromium Nickel Copper Silver Lead Mercury Gold Tungsten Platinum	Substanc Density (g 1.00 2.72 7.25 8.91 8.94 10.50 11.34 13.60 19.28 19.38 21.46
Question 2 10 Points	a. Give the correct number of significant figures for each of the following: 180: \qquad $2.30 \times 10^{-3}:$ \qquad b. Report the answer for the following operation to the correct number of significant figures: $23.46-1.1=$ \qquad c. When 58.6 is divided by 77.31 , the answer should be reported to \qquad significant digit(s). d. How many hours are there in exactly 26 days? \qquad		
Question 3 6 Points	A piece of copper contains 6.7×10^{8} atoms. What is the volume of the sample in units of liters.		
	$1 \mathrm{~cm}^{3} \mathrm{Cu}=8.8 \mathrm{~g} \mathrm{Cu}$ 9.5×10^{21} atoms $\mathrm{Cu}=1 \mathrm{~g} \mathrm{Cu}$ $1 \mathrm{Kg}=1000 \mathrm{~g}$ $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$ $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$		
	No need to do the calculation - just set up the correct dimens you may not need to fill in all the boxes. $6.7 \times 10^{8} \text { atoms } \times \square \times$ \qquad	onal analy $-x$	onversions
Question 4 4 Points	The element copper has two stable isotopes, copper-63 with an atomic mass of 62.93 amu and copper-65 with an atomic mass of 64.93 amu . From the atomic weight of $\mathrm{Cu}=63.54$ one can conclude that:both isotopes have the same percent natural abundancecopper-65 has the highest percent natural abundancemost copper atoms have an atomic mass of 63.54copper-63 has the highest percent natural abundance		
Question 5 4 Points	Circle those of the following (if any) that have the same number of protons, neutrons and electrons.		

Question 6 4 Points	A certain element consists of two stable isotopes: What is the average atomic mass of this element? Give answer to 6 significant figures
Question 7 6 Points	Decide if the following statements are true (T) or false (F) : a) Protons and neutrons are approximately equal in mass. \qquad b) The charge on a proton is the same as the charge of an electron. \qquad c) The electron acts as a buffer zone in the nucleus \qquad
Question 8 10 Points	Use the Periodic Table accompanying this exam to answer the following questions: a) Formula for the only diatomic in Period 3 \qquad b) Symbol for the lightest Alkali Metal. \qquad c) Symbol for transition metal in Group IB, Period 4. \qquad d) Plutonium (Pu) is a: (metal, nonmetal, metalloid) \qquad e) Group IIA are collectively known as the: \qquad
Question 9 4 Points	Columbs Law gives that the Force of Attraction (FA) : FA $\propto q_{a} q_{b} / r^{2}$ where q_{a} is the charge on a while q_{b} is the charge on b and r is the distance between them. 1. Which of the following have the greatest force of attraction: a. Mg^{2+} and O^{2-} separated by a distance of 419 pm b. Mn^{2+} and Se^{2-} separated by a distance of 295 pm 2. Which of the following have the greatest force of attraction: a. Mg^{2+} and O^{2-} separated by a distance of 631 pm b. K^{+}and Cl^{-}separated by a distance of 226 pm
Question 10 8 Points	Give the correct name for the following compounds: a) $\mathrm{Na}_{2} \mathrm{~S}$ \qquad b) $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$ \qquad c) $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ \qquad d) $\mathrm{NH}_{4} \mathrm{Br}$ \qquad

Question 11 8 Points	Give the correct formula for the following compounds: a) Calcium hydroxide \qquad b) Aluminum chlorate \qquad c) Chromium(II) sulfide \qquad d) Potassium sulfite \qquad
Question 12 3 Points	How many moles of Sr are there in a sample that contains 1.10×10^{22} strontium atoms? Show Work mol of Sr
Question 13 5 Points	How many moles of $\mathrm{Cu}_{2} \mathrm{SO}_{4}$ are present in 1.39 grams of this compound?
Question 14 6 Points	A hydrocarbon is a compound composed purely of hydrogen and carbon. If a particular hydrocarbon is found to be composed of $89.93 \% C$ and has a molar mass of $120.21 \mathrm{~g} / \mathrm{mol}$. What is the formula of this hydrocarbon?

Question 15 6 Points	Balance the following chemical equations using the smallest possible integer coefficients. a) $_\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{I}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ b) chlorine $(g)+$ sodium iodide $(s) \longrightarrow$ sodium chloride $(s)+$ iodine (s)
Question 16 4 Points	According to the following reaction, how many moles of sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ will be formed upon the complete reaction of 0.260 moles sulfur dioxide with excess water? $\text { sulfur dioxide }(\mathrm{g})+\text { water }(\mathrm{I}) \longrightarrow \text { sulfurous acid }\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)(\mathrm{g})$
Question 17 4 Points	Xrays X rays UV IR Microwave FM Radio waves Rang radio waves a) Put the following forms of electromagnetic radiation in order of increasing wavelength? \qquad Gamma ray 1. Shortest wavelength \qquad Ultraviolet 2. Second shortest wavelength \qquad Radio wave 3. Longest wavelength b) Put the following forms of electromagnetic radiation in order of increasing energy? \qquad AM 1. Smallest Energy \qquad Microwave 2. Second Highest Energy \qquad FM 3. Highest Energy

