iA	IIA	The Periodic Table															$1 / 7 / \mathrm{A}$
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												IIIA	fVA	VA	V/A	V/IA	4.00
Li 3	Be 4											B 5	C 6	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si	P 15	S	Cl 17	
22.99	24.31	$\ldots \mathrm{M}$	IVB	VB	V/B	V//B	V/IM	V / mb	V/IM	18	/18	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	14.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	$\mathbf{1 5 7 . 2 5}$	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	167.26	$\mathbf{1 6 8 . 9 3}$	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formula and Constants:
$K_{w} @ 25^{\circ} C=1.00 \times 10^{-14}$
$K_{a} K_{b}=K_{w}$
\square

Question 1 9 Points	The substance hydrocyanic acid (HCN) is a weak acid $\left(\mathrm{Ka}=4.90 \times 10^{-10}\right)$. What is the pH of a 0.322 M aqueous solution of sodium cyanide? $\mathrm{pH}=$
Question 2 9 Points	With respect to the following acid base reactions, indicate whether the resulting solution will be acidic, basic, or neutral: 1. When 35 mL of 0.40 M HClO and 35 mL of 0.40 M sodium hydroxide are combined: \qquad 2. When 35 mL of 0.400 M nitric acid and 35 mL of 0.400 M sodium nitrite are combined: \qquad 3. When 50 mL of 0.20 M ammonium iodide and 50 mL of 0.20 M potassium hydroxide are combined: \qquad
Question 3 9 Points	The following questions pertain to a buffer solution that is $0.102 \mathrm{M} \mathrm{in}^{\mathrm{NH}_{3}}$ (ammonia) and 0.131 M in $\mathrm{NH}_{4} \mathrm{Br}$. $\mathrm{Kb}\left(\mathrm{NH}_{3}\right)=1.8 \times 10^{-5} @ 25^{\circ} \mathrm{C}$ 1. Write the net ionic equation for the removal of added $\mathrm{H}_{3} \mathrm{O}^{+}$to this buffer: \qquad $+\mathrm{H}_{3} \mathrm{O}^{+}=$ \qquad \qquad 2. What is the buffer capacity for addition of strong base: \qquad 3. The choice of $\mathrm{NH}_{4}{ }^{+}$suggests that the desired pH is close to: \qquad
Question 4 9 Points	Identify buffer solutions from the following list. Choose all that apply. $0.30 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})+0.25 \mathrm{M} \mathrm{KNO}_{2}(\mathrm{aq})$ $0.15 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})+0.30 \mathrm{M}$ ammonium chloride(aq) 0.40M Ammonium chloride +0.30 M Ammonia $0.30 \mathrm{M} \mathrm{HCl}(\mathrm{aq})+0.30 \mathrm{M} \mathrm{KF}(\mathrm{aq})$ $0.20 \mathrm{M} \mathrm{HNO}_{3}(\mathrm{aq})+0.15 \mathrm{M} \mathrm{NaNO} 2(\mathrm{aq})$

Question 5 9 Points	Rank the following salts from 1-3 in order of increasing solubility with 1 being the most soluble and 3 being the least soluble. - AgCN $K_{\text {sp }}=1.2 \times 10^{-16}$ \qquad - $\mathrm{CaF}_{2} \quad \mathrm{~K}_{\text {sp }}=3.9 \times 10^{-11}$ \qquad - $\mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad \mathrm{~K}_{\text {sp }}=9.1 \times 10^{-33}$
Question 6 9 Points	The maximum amount of chromium(III) hydroxide that will dissolve in a 0.255 M chromium(III) nitrate solution is: Chromium(III) hydroxide: $\mathrm{Ksp}=6.70 \times 10^{-31}$ \qquad M
$\begin{aligned} & \text { Question } 7 \\ & 10 \text { Points } \\ & (4+6) \end{aligned}$	Write a balanced net ionic equation to show why the solubility of $\mathrm{Mn}(\mathrm{OH})_{2}(\mathrm{~s})$ increases in the presence of a strong acid and calculate the equilibrium constant for the reaction of this sparingly soluble salt with acid. Must show work when calculating $\mathrm{K}-\mathrm{Ksp} \mathrm{Mn}(\mathrm{OH})_{2}=4.6 \times 10^{-14}$ \qquad $+$ \qquad $=$ \qquad $+$ \qquad \qquad
Question 8 12 Points	Rank the following substances from 1-4 in order of increasing entropy with 1 being the lowest entropy and 4 being the highest entropy. - $\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$ \qquad - $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ \qquad - $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}(\mathrm{g})$ \qquad - $\mathrm{HCHO}(\mathrm{g})$ \qquad
Question 9 6 Points	Consider the reaction: $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$ Using standard absolute entropies at 298 K , calculate the entropy change for the system when 2.38 moles of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$ react at standard conditions? S° (J/K.mol): $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}): 109.6$ $\mathrm{O}_{2}(\mathrm{~g}): 205.1$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}): 69.9$

Question 10 6 Points	Consider the reaction: $\quad 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$ for which $\Delta H^{\circ}=-746.6 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=-198 \mathrm{~J} / \mathrm{K}$ at 298 K . Calculate the entropy change of the UNIVERSE when 1.57 moles of $\mathrm{NO}(\mathrm{g})$ react under standard conditions at 298 K . $\Delta S^{\circ}{ }_{\text {Universe }}=$ \qquad J/K - Is this reaction reactant or product favored? \qquad
Question 11 6 Points	Without doing any calculations, match the following thermodynamic properties with their appropriate numerical value given on the right for the following endothermic reaction. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ - $\Delta S_{r \times n}$ \qquad 1. >0 2. < 0 - $\Delta G_{r \times n}$ \qquad 3. $=0$ - $\Delta S_{\text {universe }}$ \qquad 4. >0 at low $T,<0$ at high T 5. <0 at low $T,>0$ at high T
Question 12 6 Points	For the reaction $\mathrm{Fe}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq})=\mathrm{FeCl}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-7.4 \mathrm{~kJ} \text { and } \Delta \mathrm{S}^{\circ}=107.9 \mathrm{~J} / \mathrm{K}$ a) The standard free energy change for the reaction of 1.63 moles of $\mathrm{Fe}(\mathrm{s})$ at 291 K , 1 atm would be kJ . \qquad kJ b) The reaction is (reactant, product) favored under these conditions. \qquad Assume that ΔH° and Δs° are independent of temperature.

