

Some Useful Formula and Constants:

$$
\begin{aligned}
& K_{p}=K_{c}(R T)^{\Delta n} \\
& P H+P O H=14 @ 25^{\circ} \mathrm{C} \\
& K_{a} K_{b}=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{n} \frac{K_{2}}{K_{1}}=-\frac{\Delta H^{0}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& K_{w}=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
\end{aligned}
$$

\square

Question 1 8 Points	Consider the following reaction where $K_{c}=77.52$ at 600 K : $\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CoCl}_{2}(\mathrm{~g})$ A reaction mixture was found to contain 0.128 moles of $\mathrm{COCl}_{2}(\mathrm{~g}), 5.22 \times 10^{-2}$ moles of $\mathrm{CO}(\mathrm{g})$, and 4.35×10^{-2} moles of $\mathrm{Cl}_{2}(\mathrm{~g})$, in a 1.00 Liter container. Indicate True ($\overline{\underline{T}}$) or False (\mathbf{F}) for each of the following: a) In order to reach equilibrium $\mathrm{COCl}_{2}(g)$ must be produced. \qquad b) In order to reach equilibrium K_{c} must decrease. \qquad c) In order to reach equilibrium $\mathbf{C O}(\mathrm{g})$ must be produced. \qquad d) Q is greater than K. \qquad
Question 2 5 Points	Consider the following equilibrium: $\quad \mathrm{NH}_{3}(g)+\mathrm{HI}(g) \rightleftharpoons \mathrm{NH}_{4} \mathrm{I}(\mathrm{s})$ Circle the statement that is correct with respect to Kc and Kp for this equilibrium. $K_{c}=K_{p}$ $K_{c}>K_{p}$ $\square K_{c}<K_{p}$
Question 3 8 Points	The equilibrium constant, K_{c}, for the following reaction is 3.05×10^{-3} at 262 K . $2 \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$ Calculate K_{c} and K_{p} at this temperature for the following reaction at 262 K : $\mathrm{NO}(\mathrm{~g})+\frac{1}{2} \mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NOBr}(\mathrm{~g})$ $\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$ $K_{c}=$ \qquad $K_{p}=$ \qquad
Question 4 9 Points	Consider the following system at equilibrium where $\Delta H^{\circ}=-16.1 \mathrm{~kJ}$, and $\mathrm{Kc}=1.54 \times 10^{2}$, at 298 K. $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$ If the TEMPERATURE on the equilibrium system is suddenly increased:
Question 5 4 Points	HCN is a weak acid - $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-} \quad \mathrm{K}_{c}=4.0 \times 10^{-10} @ 298 \mathrm{~K}$ Addition of OH^{-}to this equilibrium will cause the [HCN] to a) Increase c) Remain unchanged b) Decrease d) Impossible to determine

Question 6
 8 Points

Consider the following system at equilibrium where $K_{c}=6.50 \times 10^{-3}$ and $\Delta H^{\circ}=16.1 \mathrm{~kJ} / \mathrm{mol}$ at 298 K.

$$
2 \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

The production of $\mathrm{NO}(\mathrm{g})$ is favored by:
Indicate True (T) or False (F) for each of the following:

a) Decreasing the temperature. -__	$\begin{array}{l}\text { c) Adding } \mathrm{Br}_{2} . \\ \text { b) Decreasing the volume. }\end{array} \quad \begin{array}{l}\text { d) Decreasing the pressure } \\ \text { (by changing the volume). }\end{array}$

The equilibrium constant, K_{p}, for the following reaction is 0.110 at 298 K .
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
If ΔH° for this reaction is 92.7 kJ , what is the value of K_{p} at 408 K ?
Must Show Work for Full Credit: $R=8.314 \mathrm{~J} . \mathrm{mol}^{-1} . \mathrm{K}^{-1}$
$K_{p}=$ \qquad
Question 8 9 Points

Question 9 8 Points
a) What is the conjugate acid of $\mathrm{CO}_{3}{ }^{2-}$
b) What is the conjugate base of $\mathrm{HCO}_{3}{ }^{-}$
c) Write a net ionic equation to show that methylamine behaves as a Bronsted-Lowry base in water.
$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad=\quad=$
 neutral $(\underline{\underline{N}})$ solution when dissolved in water.
ammonium sulfate: lithium nitrite:
sodium nitrate:
potassium cyanide:

