IA H 1			٦	The	Pe	erio	odi	сT	ab	le							VIIIA He 2
1.01	IIA	r.										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	8										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	Ρ	S	CI	Ar
11	12	1		1.10						10		13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	<i>IB</i>	IIB.	26.98	28.09	30.97	32.07	35.45	39.95
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87		114.82	118.71	121.76	127.60		131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91			178.49	180.95		186.21	190.2	192.22	195.08			204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)]		
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97				164.93	167.26	168.93		174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful (maybe) Constants:

a) R = 8.314 J.mol⁻¹K⁻¹

b) Some Useful (maybe) Formula:

$$\int_{\Pi} \frac{P_{2}}{P_{1}} = \frac{\Delta H_{NBP}^{\circ}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$$

Psolution =)(solvent x Psolvent

Integ	rated Rate Laws for Re	actions of Type $\mathbf{A} \to \mathbf{Products}$
	Rate Law	Integrated Rate Law
	rate = <i>k</i> [A] ⁰ = <i>k</i>	$[A]_t = [A]_0 - kt$
	rate = <i>k</i> [A]	$\ln \frac{[A]_t}{[A]_0} = -kt$
	rate = $k[A]^2$	$\frac{1}{\left[A\right]_t} = \frac{1}{\left[A\right]_0} + kt$

•

Zero Order	First Order	Second Order
$t_{1/2} = \frac{[A]_o}{2k}$	$t_{1/2} = \frac{\ln 2}{k}$	$t_{1/2} = \frac{1}{k[A]_{o}}$
Directly proportional to [A]。	Constant	Inversely proportional to [A.]。

SID	The vapor pressure of bromoethane is 40.1	First
Ougstign 1	The vapor pressure of bromoethane is 40.1	
Question 1 10 Points	heat of vaporization is constant at 29.2 kJ, bromoethane (C_2H_5Br) at 263K.	mm Hg at 246K. Assuming that its molar /mol, determine the vapor pressure of Show Work for Full Credit – R = 8.314 J.mol ⁻¹ .K ⁻¹
Oursettion 2		Mm Hg
E E	What type(s) of intermolecular forces are e Circle all those that apply.	xpected between HFCO molecules? (C is the central atom)
	🗆 Ion – Ion	🗆 Ion – Dipole
	🗆 Dipole – Dipole	Hydrogen bonding
	Induced Dipole - Induced Dipole	
Question 3 6 Points	A plot of vapor pressures vs temperature, is a) The molecule with the weakest intern b) The Normal Boiling Point of Methano	Ethanol Heptane Heptane 60 70 80 90 100 110 Derature (°C) 6 depicted above. nolecular forces?

Question 4 8 Points	An aqueous solution is 7.02 % by mass hydrofraction of hydrochloric acid in the solution Must Show Work for Full Credit: Ma	
Question 5 8 Points	Match the following aqueous solutions with t the right. Assume complete dissociation of	
	\sim 0.21 m CrSO ₄	A. Lowest freezing point
	0.16 m <i>C</i> uCl	B. Second lowest freezing point
	0.19 m <i>C</i> u(NO ₃) ₂	C. Third lowest freezing point
	0.44 m Glucose (nonelectrolyte)	D. Highest freezing point
Question 6 6 Points	The Vapor Pressure of 4 substances was me 143.0 mmHg, 67.9 mm Hg, 15 The four substances measured are given bel anticipate having the Vapor Pressure of 15	51.7 mmHg, 514.4 mmHg ow. Which one of the four would you
	□ CH₃OH	\Box C_6H_{14}
	\Box C_5H_{12}	□ CH ₃ CH ₂ OH
Question 7 7 Points	The vapor pressure of water (H ₂ O) is 23.8 of a solution consisting of 8.55 mol of wate nonelectrolyte?	Must Show Work for Full Credit
		mm

Question 8 10 Points	In one expe concentrati	riment, when tl	H ₂ O ₂ (g) = he initial conce pped to 1.29x	H ₂ O(g) + ½ (entration of H 10 ⁻² M after	202 was 5.50x10 ⁻² M 59.6 seconds had pa	, the ssed . Based
Question 9		ng initial rate c	lata are for t	he oxidation o	f nitrogen monoxide b	M ⁻¹ . s ⁻¹ y oxygen at
12 Points	25°C:		2 NO	+ O ₂ = 2 NO	-	
			LINO	+ O2 - 2 NO	2	
		Experiment	[NO]0 M	[O ₂] ₀ M	Initial Rate, M.s ⁻¹	
		1	9.10x10 ⁻³	5.61×10 ⁻⁴	4.20×10 ⁻⁴	_
		2	1.82x10 ⁻²	5.61×10 ⁻⁴	1.68×10 ⁻³	_
		3	9.10x10 ⁻³	1.12x10 ⁻³	8.38×10 ⁻⁴	
	b) Wha	t is the order o t is the order o t is the rate co	of the reaction	•		
Question 10 8 Points		ng plots pertain ver 8 minutes	to the reacti	on A = B in wł	nich the concentration	of A was
	[A]	Slope = -0.102 Fime plots the it car	[A]	Slope = -0.4 Time		= 3.472 •

Question 11 10 Points	Chromium-51 is a radioisotope that is used to assess the lifetime of red blood cells The half-life of chromium-51 is 27.7 days. If you begin with 41.7 mg of this isotope, what mass remains after 77.6 days have passed? Since the decomposition is a radioactive decay reaction, it is first order.
	mg
Question 12 9 Points	In a study of the rearrangement of ammonium cyanate to urea in aqueous solution at 50°C NH4NCO(aq) = (NH2)2CO(aq) the concentration of NH4NCO was followed as a function of time. It was found that a graph of 1/[NH4NCO] versus time in minutes gave a straight line with a slope of 1.47×10 ⁻² M ⁻¹ min ⁻¹ and a y-intercept of 2.65 M ⁻¹ . Based on this plot the: a) the reaction is order in NH4NCO b) and the rate constant for the reaction is: (units)

Do Not Write Below This Line

|--|