IA																	VIIIA
н				The	Pe	pric	odi	сΤ	ah	e							He
1	11.6		30				Jui	• •	un			111.6	410	140	1.22.0	1.00 0	2
1.01	IIA	1										ШA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	2										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											A	Si	P	S	CI	Ar
11	12	No.										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	//B	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful (maybe) Constants:

a) R = 8.314 J.mol⁻¹K⁻¹

b) Some Useful (maybe) Formula:

$$\int_{\Pi} \frac{P_{2}}{P_{1}} = \frac{\Delta H_{NBP}^{\circ}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$$

Psolution =)(solvent x Psolvent

Integ	rated Rate Laws for Re	eactions of Type $A \rightarrow Products$
	Rate Law	Integrated Rate Law
	rate = <i>k</i> [A] ⁰ = <i>k</i>	$[A]_t = [A]_0 - kt$
	rate = <i>k</i> [A]	$\ln \frac{[\mathbf{A}]_t}{[\mathbf{A}]_0} = -kt$
	rate = $k[A]^2$	$\frac{1}{\left[\mathbf{A}\right]_t} = \frac{1}{\left[\mathbf{A}\right]_0} + kt$

•

Zero Order	First Order	Second Order
$t_{1/2} = \frac{[A]_o}{2k}$	$t_{1/2} = \frac{\ln 2}{k}$	$t_{1/2} = \frac{1}{k[A]_{o}}$
Directly proportional to [A]。	Constant	Inversely proportional to [A.]。

SID	Last	First
Question 1 10 Points	The vapor pressure of bromoethane is 40.1 heat of vaporization is constant at 29.2 kJ bromoethane (C ₂ H ₅ Br) at 263K. Must	mm Hg at 246K. Assuming that its molar /mol, determine the vapor pressure of Show Work for Full Credit - R = 8.314 J.mol ⁻¹ .K ⁻¹
Question 2 6 Points	What type(s) of intermolecular forces are e Circle all those that apply.	Mm Hg expected between HFCO molecules? (C is the central atom)
	🗆 Ion – Ion	🗆 Ion – Dipole
	🗆 Dipole – Dipole	Hydrogen bonding
	Induced Dipole - Induced Dipole	
Question 3 6 Points	A plot of vapor pressures vs temperature, is a) The Mormal Bailing Point of Methant	$\begin{array}{c c} \hline & & & & & \\ \hline & & & & & \\ \hline & & & & &$

Question 4 8 Points	An aqueous solution is 7.02 % by mass hydr fraction of hydrochloric acid in the solution Must Show Work for Full Credit: Ma	rochloric acid, HCl. What is the mole ? Har Masses, HCl = 36.5g.mol ⁻¹ , H ₂ O = 18.02g.mol ⁻¹
Question 5	Match the following aqueous solutions with t	he appropriate letter from the column on
	The right. Assume complete dissociation of 0.21 m CrSO4	electrolytes. A. Lowest freezing point
	0.16 m <i>C</i> uCl ₂	B. Second lowest freezing point
	0.13 m Fe(NO3)3	C. Third lowest freezing point
	0.50 m Glucose (nonelectrolyte)	D. Highest freezing point
Question 6 6 Points	The Vapor Pressure of 4 substances was me 143.0 mmHg, 67.9 mm Hg, 15 The four substances measured are given belo anticipate having the Vapor Pressure of 143	asured at 25°C and they were found to be 51.7 mmHg, 514.4 mmHg ow. Which one of the four would you 3.0 mm Hg?
	□ CH₃OH	\Box C_6H_{14}
	\Box C_5H_{12}	
Question 7 7 Points	The vapor pressure of water (H ₂ O) is 23.8 of a solution consisting of 8.55 mol of wate nonelectrolyte ?	mm Hg at 25°C. What is the vapor pressure r and 0.265 mol of a nonvolatile Must Show Work for Full Credit mm Ha

Question 8	The gas pho	se decompositi	on of hydroge	n peroxide at	400°C is second order i	n H2O2.
10 Points			H ₂ O ₂ (g) =	$H_2O(g) + \frac{1}{2}$	D ₂ (g)	
	In one expe	riment, when t	he initial conce	entration of H	l₂O₂ was 5.50×10 ⁻² M, t	he
	concentrati	on of H 2 O 2 dro	pped to 1.29x	10 ⁻² M after	59.6 seconds had pass	ed. Based
	on this data	, the rate con s	stant (k) for t	he reaction is		
					Must Show Work to	or Full Credit
						M ⁻¹ s ⁻¹
		• • • •				
QUESTION 9	I NE TOILOWIN	ng initiai rate d	ata are for the	ne oxidation o	T nitrogen monoxide by	oxygen at
12 100013	25°C:		2 NO	- 0 - 2 NO		
			2 NU	$+ O_2 = 2 NO$	2	
		Experiment	[NO] ₀ M	[O ₂] ₀ M	Initial Rate, M.s ⁻¹	
		1	9.10x10 ⁻³	5.61×10 ⁻⁴	4.20×10 ⁻⁴	
		2	1.82×10 ⁻²	5.61×10 ⁻⁴	1.68×10 ⁻³	
		3	9.10x10 ⁻³	1.12x10 ⁻³	8.38×10 ⁻⁴	
			e	•••		
	a) Wha	t is the order o	ot the reaction	on with respec	ct to NO?	
	b) Wha	t is the order o	of the reaction	on with respe	ct to O2?	
	c) Wha	t is the rate c	onstant (k)?			
Ouestion 10	The following	n nlots nertain	to the reacti	on A - Bin wh	nich the concentration d	of A was
4 Points	monitored o	ver 8 minutes				
	•				Olana -	2 470
		Slope = -0.102		Slope = -0.4	24 Slope =	3.472
	a		E	\sim		_
	- ·		Ľ	\sim	1	/•
		· · ·				•
		Time		Time	Time	
			1	Time	Time	
	From these	plots the it ca	n be determine	ed that the R	ate =[A]	

Question 11 10 Points	Chromium-51 is a radioisotope that is used to assess the lifetime of red blood cells The half-life of chromium-51 is 27.7 days. If you begin with 41.7 mg of this isotope, what mass remains after 77.6 days have passed? Since the decomposition is a radioactive decay reaction, it is first order.
	mg
Question 12 9 Points	In a study of the rearrangement of ammonium cyanate to urea in aqueous solution at 50°C
	$NH_4NCO(aq) = (NH_2)_2CO(aq)$
	the concentration of NH4NCO was followed as a function of time.
	It was found that a graph of 1/[NH4NCO] versus time in minutes gave a straight line with a slope of 1.47×10 ⁻² M ⁻¹ min ⁻¹ and a y-intercept of 2.65 M ⁻¹ .
	Based on this plot the:
	a) the reaction isorder in NH4NCO b) and the rate constant for the reaction is: (units)

Only fill if your iClicker is incorrectly registered:- iClicker ID:

Do Not Write Below This Line

|--|