Question 1 Consider the following endothermic equilibrium reaction:

$$
\mathrm{COBr}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

The production of $\mathrm{CO}(\mathrm{g})$ is favored by

1. True False Increasing the temperature.
2. True False Decreasing the pressure.
3. True False Decreasing the volume.
4. True False Removing COBr_{2}.
5. True False Removing Br_{2}.

Question 2 4 Points

1. Write a net ionic equation to show that hydrofluoric acid, behaves as an acid in water.

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Leftrightarrow \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}
$$

2. Write a net ionic equation to show that isoquinoline, behaves as a base in water.

$$
\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Leftrightarrow \quad \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NH}^{+}+\mathrm{OH}^{-}
$$

Question 3 Assign each substance given on the left with a category given on the right.
4 Points
HF 2

1. Strong Acid
$\mathrm{LiOH} \quad 3$
2. Weak Acid
$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{NH} 4$
3. Strong Base
$\mathrm{HNO}_{2} 2$
4. Weak Base

Question 4 Consider the amino acids listed below:
4 Points

Lysine, $K_{a}=1.0 \times 10^{-9} @ 25^{\circ} \mathrm{C}$
Tyrosine, $K_{a}=1.6 \times 10^{-10} @ 25^{\circ} \mathrm{C}$

1. The strongest of the four acids is:
2. The acid with the largest $p K_{a}$ value is:

Histidine, $K_{a}=7.9 \times 10^{-7}$ @ $25^{\circ} \mathrm{C}$
Cysteine, $K_{a}=5.0 \times 10^{-9} @ 25^{\circ} \mathrm{C}$

Histidine

Tyrsoine

Question 5 The pH of an aqueous solution was found to be 12.00.

1. The pOH of this solution is:
2. The hydronium concentration is:
1×10^{-12}
3. The hydroxide concentration is: 1×10^{-2}
4. This solution is: basic
(a buffer, acidic, neutral, basic)

Question 6 12 Points

1. In the following net ionic equation, identify each species as either a BronstedLowry acid or a Bronsted-Lowry base.

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{HSO}_{3}^{-} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}
$$

- Circle the appropriate answer

$\mathrm{CH}_{3} \mathrm{COO}^{-}$	B-L Acid	B-L Base
$\mathrm{HSO}_{3}{ }^{-}$	B-L Acid	B-L Base
$\mathrm{CH}_{3} \mathrm{COOH}$	B-L Acid	B-L Base
$\mathrm{SO}_{3}{ }^{2-}$	B-L Acid	B-L Base

2. The formula for the conjugate acid of $\mathrm{CH}_{3} \mathrm{COO}^{-}$is: $\mathrm{CH}_{3} \mathrm{COOH}$
3. The formula for the conjugate base of $\mathrm{HSO}_{3}{ }^{-}$is: $\mathrm{SO}_{3}{ }^{2-}$

Question 7 Are the following aqueous solutions, buffer solutions?

1. $0.40 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and $0.30 \mathrm{M} \mathrm{NH}_{3}$

Yes No
2. 0.30 M HF and 0.10 M NaF

Yes No
3. 0.40 M HI and 0.40 M NaI Yes No

Which buffer would absorb the greatest quantity of $\mathrm{H}_{3} \mathrm{O}^{+}$? 12
Question 8 A buffer solution made from HClO and KClO has a pH of 7.15. If pKa for HClO is 7.46, 4 Points this implies that:

- Circle the appropriate answer

1. $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]=1$
2. $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]>1$
3. $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]<1$

Question 9 A buffer solution is 0.476 M in $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.379 M in $\mathrm{CH}_{3} \mathrm{COONa}$. If Ka for

[Show Work]

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log _{10} \frac{\left[\mathrm{~A}^{-}\right]}{[H A]} \\
& \mathrm{pH}=-\log _{10}\left(1.8 \times 10^{-5}\right)+\log _{10} \frac{0.379}{0.476} \\
& \mathrm{pH}=4.74+\log _{10}(0.796)
\end{aligned}
$$

$$
P h=4.65
$$

Question 10 8 Points

A small amount of strong acid is added to a buffer made from HCN and NaCN . What changes if any will occur to the solution.

- Circle the appropriate answer

1. pH	Increase	Decrease	Remain the same
2. $\left[\mathrm{OH}^{-}\right]$	Increase	Decrease	Remain the same
3. $[\mathrm{HCN}]$	Increase	Decrease	Remain the same
4. $\left[\mathrm{CN}^{-}\right]$	Increase	Decrease	Remain the same

Question 11 6 Points

Visible light

Blue Region
 Red Region

a. Rank the following (1-3) forms of electromannetic radiation in order of increasing energy: 1= Lowest Energy

3 = Highest Energy

Visible
2
Radio wave: 1
Gamma ray: 3
b. Rank the following (1-3) forms of electromagnetic radiation in order of increasing wavelength: $1=$ Shortest Wavelength 3 = Longest Wavelength

Infrared: 2
Radio wave: 3
Visible: $\quad 1$

Question 12 Write a balanced nuclear equation for the following:
\times Points

1. The nuclide ${ }^{222}{ }_{86} R n$ undergoes alpha emission.
2. The nuclide ${ }^{18} \mathrm{~F}$ undergoes beta decay.
3. The nuclide ${ }^{129}{ }_{55}$ Cs decays by electron capture.
4. The nuclide ${ }_{13}{ }_{13} \mathrm{Al}$ undergoes positron emission.
${ }_{222} \mathrm{B6} \mathrm{Rn} \quad \rightarrow{ }_{2} \mathrm{He}+{ }^{218}{ }_{84} \mathrm{Po}$
${ }^{18} \mathrm{~N} \quad \rightarrow{ }^{0}{ }_{-1} e+{ }_{8}^{18} \mathrm{O}$
${ }^{129}{ }_{55} \mathrm{Cs}+{ }_{-1} \mathrm{e} \boldsymbol{e} \rightarrow{ }^{129}{ }_{54} \mathrm{Xe}$
${ }_{25}{ }_{13} \mathrm{Al} \quad \rightarrow{ }^{0}{ }_{+1} \mathrm{e}+{ }^{25}{ }_{12} \mathrm{Mg}$

Which of the above represents the decay of an isotope with too many neutrons. 2
Question 13 Iodine-131 (half-life, 8.04 days) is used as a treatment for thyroid cancer. How many milligrams of an 80.1 milligram sample of iodine- 131 will remain after $\mathbf{4 0 . 2}$ days? [Show Work]

$$
\begin{aligned}
& \frac{40.2}{8.04}=5 \text { Half-lives } \\
& 80.1 \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=2.50
\end{aligned}
$$

Question 14 According to the following reaction, how many moles of potassium hydroxide are necessary to form 0.668 moles potassium carbonate?
carbon dioxide (g) + potassium hydroxide (aq) \rightarrow potassium carbonate (aq) + water (I) [Show Work]

$$
\begin{gathered}
\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
0.668 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3} \frac{2 \mathrm{KOH}}{1 \mathrm{~K}_{2} \mathrm{CO}_{3}}=1.34 \mathrm{~mol} \mathrm{KOH}
\end{gathered}
$$

Moles of potassium hydroxide: 1.34
Question 15 An aqueous solution of hydrobromic acid is standardized by titration with a 0.0768 M 6 Points solution of barium hydroxide. If 39.2 mL of base are required to neutralize 25.3 mL of the acid, what is the molarity of the hydrobromic acid solution?

$$
\begin{aligned}
& 2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ba}\left(\mathrm{OH}_{2}\right)(\mathrm{aq})=\mathrm{BaBr}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& 0.0392 \times 0.0768=0.00301 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \\
& 0.00301 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \frac{2 \mathrm{HBr}}{1 \mathrm{Ba}(\mathrm{OH})_{2}}=0.00602 \mathrm{~mol} \mathrm{HBr} \\
& \frac{0.00602}{0.0253}=0.238 \mathrm{M}
\end{aligned}
$$

Molarity of hydrobromic acid:
Question 16 According to the following reaction, how many moles of ammonium nitrite are needed to form 30.3 grams of water?

$$
\text { ammonium nitrite }(\mathrm{aq}) \rightarrow \text { nitrogen }(\mathrm{g})+\text { water }(\mathrm{I})
$$

$$
\mathrm{NH}_{4} \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\begin{aligned}
& 30.3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \frac{1 \mathrm{~mol}_{1}}{18.02 \mathrm{~g}}=1.7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& 1.7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \frac{1 \mathrm{NH}_{4} \mathrm{NO}_{2}}{2 \mathrm{H}_{2} \mathrm{O}}=0.8 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{2}
\end{aligned}
$$

Moles of ammonium nitrite: 0.8

