Question 1
10 Points



1. The letter that corresponds to a pair of valence electrons shared by two atoms.

B
2. The letter that corresponds to a pair of valence electrons held by a single atom.
3. How many of these molecules obey the octet rule?
4. Circle the structure(s) that contain a triple bond.
5. How many of these molecules have resonance structures? 1 or 2

Question 2 Draw the best Lewis Dot Structure for the following molecules 12 Points


Question 3 Draw the Lewis Dot Structure for $\mathrm{CH}_{3} \mathrm{COOH}$ in the space provided on the left. Then 10 Points answer the questions of the right.


1. The number of $\mathbf{C}-\mathrm{H}$ bonds: 3
2. The number of $\mathbf{O}-\mathrm{H}$ bonds: 1
3. The number of $\boldsymbol{C}-\boldsymbol{C}$ bonds: 1
4. The number of $\boldsymbol{C}-\mathbf{O}$ bonds: 2 or 3
5. Total number of unshared pairs: 4

Question 4 Draw all resonance structures for $\mathrm{NO}_{2} \mathrm{~F}$ ?


Question 5 10 Points

1. Name the compound with the formula $\mathrm{BCl}_{3}$ ?
2. Name the compound with the formula $\mathrm{SF}_{6}$ ?
3. Name the compound with the formula $\mathrm{SO}_{2}$ ?
4. The formula for dioxygen difluoride?
5. The formula for phosphorus pentachloride?

Boron trichloride
Sulfur hexafluoride
Sulfur dioxide
$\mathrm{O}_{2} \mathrm{~F}_{2}$
$\mathrm{PCl}_{5}$

Question 6

A

D

B

E

F

C





1. The molecular geometry for $B$ is:
2. The molecular geometry for $F$ is:
3. The molecule(s) with a bond angle of $\sim 109^{\circ}$
4. The molecule(s) with a bond angle of $\sim 180^{\circ}$
5. The molecule(s) with trigonal planar molecular geometry:
6. The molecule(s) with an angular/bent molecular geometry:

E, F
7. The molecule in 6. that has the largest bond angle:

Trigonal pyramid
Angular/Bent
$A, B, E$
C

Question 8
6 Points


Question 9 6 Points


1. The predicted bond angle about $\mathbf{1}$ is: 120
2. The predicted bond angle about 2 is: 109
3. The predicted bond angle about 3 is: 109

What is the predicted bond angle about the atoms indicated on Tylenol:

1. Oxygen 1: 109
2. Nitrogen 2: 109
3. Carbon 3: 120

Question 10 Write the equilibrium expressions for the following reactions:
6 Points

1. $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g})$
2. $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
3. $\mathrm{F}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}$
$K=[\mathrm{NOCl}]^{2} /\left[\mathrm{NO}^{2}\left[\mathrm{Cl}_{2}\right]\right.$
$K=\left[H_{2}\right]^{2}\left[S_{2}\right]$
$K=[H F]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{F}^{-}\right]$

Question 11 For the following equilibria, indicate using the appropriate letter whether:
A. Appreciable quantities of all species are present at equilibrium.
B. The forward reaction is favored at equilibrium.
C. The reverse reaction is favored at equilibrium.

1. $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} \quad \mathrm{K}=7.55 \times 10^{-4}$ @ $25^{\circ} \mathrm{C} \quad \mathrm{C}$
2. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$K=3.5 \times 10^{8} @ 25^{\circ} \mathrm{C}$
B
3. $\mathrm{Hb}+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{HbO}_{2}$
$K \sim 75 @ 25^{\circ} \mathrm{C}$
A
