Question 1 1. How many significant figures are there in each of the following numbers?
a. 0.07033
b. 241.94
2. When 18.44 is added to 36.1 , the result should be reported with 1 digit(s) after the decimal point.
3. When 18.44 is multiplied by 36.1 , the answer should be reported to 3 significant digit(s).
4. There are 12 eggs in a dozen. If a farmer's chickens produce an average of 524 dozen eggs in a month, how should the average number of eggs per month be reported? $\quad 6.29 \times 10^{3}$

Question

Carry out the following calculation and report the answer in the correct number of significant figures.

$$
\text { (168) }\left[\frac{23.56-2.3}{1.248 \times 10^{3}}\right]=\begin{array}{|l|}
\hline \text { Answer } \\
\hline 2.86 \\
\hline
\end{array}
$$

Question 3 Give the correct name for the following polyatomic ion.
8 Points
a. $\quad \mathrm{ClO}_{2}^{-}$Chlorite
b. $\quad \mathrm{SO}_{4}{ }^{2-}$ Sulfate
c. $\quad \mathrm{SO}_{3}{ }^{2-}$ Sulfite
d. $\mathrm{NO}_{3}{ }^{-}$Nitrate

Question 4
3 Points

Question 5 Gallium has two naturally occurring isomers:

	Exact Mass (amu)	Abundance
${ }^{69} \mathrm{Ga}$	69.925581	60.10
${ }^{71} \mathrm{Ga}$	70.924701	39.90

What is the average atomic mass of Gallium? Give answer to 6 decimal places.
$69.925581(0.6010)+70.924701(0.3990)=70.324230 \mathrm{amu}$

Question 6 The following questions pertain to the periodic table given at the front of this exam:

10 Points

Question 7
a. Element 22 belongs to which group?
b. Element 22 belongs to which period?
c. Element 22 is one of the Transition metals.
d. The symbol for the lightest Alkali Earth Metal is? Be
e. The name of the diatomic element in period 3. Chlorine
a. What is the formula for magnesium sulfide? MgS
b. Name of the compound with the formula CaCO_{3} ? Calcium carbonate
c. What is the formula for ammonium iodide? $\mathrm{NH}_{4} \mathrm{I}$
d. Name of the compound with the formula $\mathrm{Cu}_{3} \mathrm{PO}_{4}$? Copper(I) phosphate

Question 8

QUESTION

ANSWER
A sample of cinnamaldehyde, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$, contains 0.168 mol of the compound. What is the mass of this sample, in grams?
22.2 \square

Question 9 How many moles of nitrate ions are present in a sample that contains 2.88 moles of 6 Points magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$?
[Must Show Work]

$2.88 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	$2 \mathrm{NO}_{3}^{-}$
	$1 \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Moles of $\mathrm{NO}_{3}{ }^{-}$ \square
Question 10 How many grams of Co^{2+} are present in 1.59 moles of $\mathrm{Co}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
8 Points

$4.77 \mathrm{~mol} \mathrm{Co}^{2+}$	58.39 g
	1 mol

Grams of Co^{2+} \square

Question 11 1. Balance the following molecular equations using the smallest possible integer 6 Points coefficients.
a. $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$=2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$
b. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{l})+7 \mathrm{O}_{2}(\mathrm{~g})$
$=4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2. Write a balanced equation for the reaction described, using the smallest possible integer coefficients.
When iron reacts with oxygen, iron(II) oxide is formed.
$2 \mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{FeO}$
Question 12 1. How many orbitals are there in the shell with $n=4$ in an atom?
2. The maximum number of electrons possible in a set of 4 s orbitals is?
3. The orbital depicted directly below is what type of orbital?

4. The $2 s$ orbital is smaller/lower in energy/closer to the nucleus than the 3 s orbital.

Question 13 14 Points

1. Write the electron configuration for the chlorine atom: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$.
2. Write the electron configuration for the calcium atom: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$.
3. Write the Noble Gas configuration for iron:

$$
[A r] 4 s^{2} 3 d^{6} .
$$

4. * ${ }^{*}$ The Lewis diagram represents the valence electron configuration of a maingroup element. This element is in group: VIA
5. The element with an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{3}$ is in group VB and period 4.
6. Carbon has 4 valence electrons.

Question 14 4 Points

Rank the following elements, from 1-4 with 1 being the smallest, according to atomic size.
$\begin{array}{llllllll}2 & C & 1 & 0 & 3 & \mathrm{Be} & 4 & \mathrm{Ca}\end{array}$

Question 15 Rank the following elements, from 1-4 with 1 being the smallest, according to ionization 4 Points energy.
$3 C$
C
4
0
2
Be
1
Ca

