Question 1
8 Points
a. Write a net ionic equation to show that perchloric acid, behaves as an acid in water.

$$
\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \begin{gathered}
= \\
(=\text { or } \Leftrightarrow)
\end{gathered} \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}_{4}^{-}
$$

b. Write a net ionic equation to show how ammonia behaves as a base in water.

$$
\begin{array}{ll}
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \Leftrightarrow \\
(=\text { or } \Leftrightarrow)
\end{array} \quad \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Question 2 8 Points
a. $\mathrm{HNO}_{2} \quad 2$
b. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N} 4$
c. $\mathrm{CH}_{3} \mathrm{COOH} 2$
d. $\mathrm{Ba}(\mathrm{OH})_{2} \quad 3$

1. Strong Acid
2. Weak Acid
3. Strong Base
4. Weak Base

Question 3 Circle the appropriate answers 6 Points

Acid $\quad K_{a}$

| A | Acetic | $1.8 \times 10^{-5}$ |
| :--- | :--- | :--- |
| B | Histidine | $7.9 \times 10^{-7}$ |
| C | Carbonic | $4.2 \times 10^{-7}$ |

a. The acid with the smallest $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ in a 0.10 M aqueous solution is:

A B C
b. The acid with the smallest pKa: A B C
c. The acid with the smallest pOH in a 0.10 M aqueous solution is: $A \quad B \quad C$

Question 4 A student determines that the value of pKa for $\mathrm{HCN}=9.29$.

Question 5 The hydroxide concentration in an aqueous solution is $3.5 \times 10^{-2} \mathrm{M}$. 9 Points

Question 6 10 Points
a. The hydronium ion concentration is:
b. The pH of this solution is:
c. The pOH is:
$2.88 \times 10^{-13} \mathrm{M}$
12.54
1.46

1. For following net ionic equation:
$\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \Leftrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{SO}_{3}{ }^{2-}(\mathrm{aq})$

- Circle the appropriate answer -B-L = Bronsted Lowry

| $\mathrm{SO}_{3}{ }^{2-}$ | B-L Acid | B-L Base |
| :--- | :--- | :--- |
| $\mathrm{HSO}_{3}{ }^{-}$ | $B-L$ Acid | B-L Base |

2. The formula for the conjugate acid of $\mathrm{CN}^{-}$is:

HCN
3. The formula for the conjugate base of $\mathrm{HSO}_{3}{ }^{-}$is: $\mathrm{SO}_{3}{ }^{2-}$

Question 7
4 Points A buffer solution made from HClO and KClO has a pH of 7.65. If pKa for HClO is 7.46, this implies that:

- Circle the appropriate answer

1. $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]=1$
2. $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]>1$
3. $\left[\mathrm{ClO}^{-}\right] /[\mathrm{HClO}]<1$

Question 8 4 Points

Question 9 8 Points

Question 10 9 Points

Question 11 6 Points

A small amount of strong base is added to a buffer made from HCN and NaCN . What changes if any will occur to the solution.

- Circle the appropriate answer

| 1. pH | Increase | Decrease | Remain the same |
| :--- | :--- | :--- | :--- |
| 2. $\left[\mathrm{OH}^{-}\right]$ | Increase | Decrease | Remain the same |
| 3. $[\mathrm{HCN}]$ | Increase | Decrease | Remain the same |
| 4. $\left[\mathrm{CN}^{-}\right]$ | Increase | Decrease | Remain the same |

A buffer solution made from HF and NaF has a pH of 2.87. If pKa for HF is 3.14, what is the $\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]$ in the buffer?

$$
\begin{aligned}
& \mathrm{pH}=\mathrm{pK} \\
& \mathrm{a}
\end{aligned}+\log _{10} \frac{\left[\mathrm{~F}^{-}\right]}{[\mathrm{HF}]}
$$

$$
\log _{10} \frac{\left[F^{-}\right]}{[H F]}=-0.27
$$

$\left[\mathrm{F}^{-}\right] /[\mathrm{HF}]$ $\square$

Question $12{ }^{131}$ I (half-life, 8.04 days) is used as a treatment for thyroid cancer. How many
3 Points milligrams of a 32 milligram sample of ${ }^{131}$ I will remain after 32.16 days?

$$
\frac{32.16}{8.04}=4
$$

$32 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=2$
2 Milligrams ${ }^{131} \mathrm{I}$

Question 13 According to the following reaction, how many grams of oxygen gas are required for the 6 Points complete reaction of 21.3 grams of carbon monoxide?

Question 14 An aqueous solution of hydrochloric acid is standardized by titration with a 0.453 M

## 7 Points

 solution of barium hydroxide.If 29.4 mL of base are required to neutralize 15.6 mL of the acid, what is the molarity of the hydrochloric acid solution?

$$
\begin{gathered}
2 \mathrm{HCl}+\mathrm{Ba}(\mathrm{OH})_{2}=\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
0.453 \times 0.0294=1.33 \times 10^{-2} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}
\end{gathered}
$$

$$
\left\lvert\, \begin{array}{r|r}
1.33 \times 10^{-2} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} & 2 \mathrm{HCl} \\
\hline & \mathrm{Ba}(\mathrm{OH})_{2}
\end{array}=2.66 \times 10^{-2}\right.
$$

Question 15 How many grams of solid calcium hydroxide are needed to exactly neutralize 18.3 mL of a 8 Points $\quad 0.690 \mathrm{M}$ perchloric acid solution? Assume that the volume remains constant.

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HClO}_{4}=\mathrm{Ca}\left(\mathrm{ClO}_{4}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
0.690 \times 0.0183=0.0126 \mathrm{~mol} \mathrm{HClO}_{4} \\
\begin{array}{l|l}
0.0126 \mathrm{~mol} \mathrm{HClO}_{4} & \mathrm{Ca}(\mathrm{OH})_{2} \\
\hline & 2 \mathrm{HClO}_{4}
\end{array}=6.31 \times 10^{-3} \mathrm{~mol}
\end{gathered}
$$

$$
\begin{array}{l|l}
6.31 \times 10^{-3} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} & 74.1 \mathrm{~g} \\
\hline & 1 \mathrm{~mol}
\end{array}=0.468 \mathrm{~g}
$$

$$
\begin{aligned}
& \text { carbon monoxide ( } \mathrm{g} \text { ) + oxygen ( } \mathrm{g} \text { ) = carbon dioxide ( } \mathrm{g} \text { ) } \\
& \begin{array}{l|c}
21.3 \mathrm{~g} \mathrm{CO} & 1 \mathrm{~mol} \\
\hline & 28.01 \mathrm{~g}
\end{array}=0.76 \mathrm{~mol} \mathrm{CO} \\
& \begin{array}{l|l}
0.76 \mathrm{~mol} \mathrm{CO} & 1 \mathrm{O}_{2} \\
\hline & 2 \mathrm{CO}
\end{array}=0.38 \mathrm{~mol} \mathrm{O} 2 \\
& \begin{array}{l|l}
0.38 \mathrm{~mol} \mathrm{O}_{2} & 32 \mathrm{~g} \\
\hline & 1 \mathrm{~mol}
\end{array}=12.2 \mathrm{~g} \\
& \text { 12.2 Grams of oxygen gas }
\end{aligned}
$$

