Question 1 8 Points a. Write a **net ionic equation** to show that **perchloric** acid, behaves as an acid in water.

$$HCIO_4(aq) + H_2O(1)$$
 = $H_3O^+ + CIO_4^-$
(= or \Leftrightarrow)

b. Write a net ionic equation to show how ammonia behaves as a base in water.

$$NH_3(aq) + H_2O(1)$$
 \Leftrightarrow $NH_4^+ + OH^ (= or \Leftrightarrow)$

Question 2 8 Points

- a. HNO₂ 2
- b. C₉H₇N 4
- c. CH₃COOH 2
- d. $Ba(OH)_2$ 3

- 1. Strong Acid
- 2. Weak Acid
- 3. Strong Base
- 4. Weak Base

Question 3 Circle the appropriate answers 6 Points

- Acid K_{α} A Acetic 1.8×10^{-5} B Histidine 7.9×10^{-7} C Carbonic 4.2×10^{-7}
- a. The acid with the smallest $[H_3O^*]$ in a 0.10 M aqueous solution is: A B C
- b. The acid with the smallest pKa: A B C
- c. The acid with the smallest pOH in a 0.10 M aqueous solution is: A B

Question 4 A student determines that the value of **pKa** for HCN = 9.29.

4 Points

What is

What is the value of Ka? 5.13×10⁻¹⁰

Question 5 The **hydroxide** concentration in an aqueous solution is 3.5×10^{-2} M. 9 Points

a. The hydronium ion concentration is: 2.88×10⁻¹³ M

b. The **pH** of this solution is:

c. The **pOH** is: 1.46

Question 6

1. For following net ionic equation:

$$CN^{-}(aq) + HSO_3^{-}(aq) \Leftrightarrow HCN(aq) + SO_3^{2-}(aq)$$

- Circle the appropriate answer - B-L = Bronsted Lowry

2. The formula for the conjugate acid of CN^- is:

3. The formula for the conjugate base of HSO_3^- is: SO_3^{2-}

Question 7 A buffer solution made from HCIO and KCIO has a pH of 7.65. If pKa for HCIO is 7.46,

4 Points - Circle the appropriate answer

- 1. $[ClO^{-}]/[HClO] = 1$
- 2. [CIO-]/[HCIO] > 1
- 3. [CIO-]/[HCIO] < 1

Question 8 A buffer solution made from **HF** and **NaF** has a pH of **2.87**. If pKa for HF is 3.14, what is the $[F^-]/[HF]$ in the buffer?

pH = pK_a + log₁₀
$$\frac{[F^-]}{[HF]}$$
 log₁₀ $\frac{[F^-]}{[HF]}$ = -0.27
2.87 = 3.14 + log₁₀ $\frac{[F^-]}{[HF]}$

[F⁻]/[HF] 0.54

Question 9 A small amount of **strong base** is added to a **buffer** made from **HCN** and **NaCN**. What changes if any will occur to the solution.

- Circle the appropriate answer

1.	pН	Increase	Decrease	Remain the same
2.	[OH-]	Increase	Decrease	Remain the same
3.	[HCN]	Increase	Decrease	Remain the same
4.	[CN ⁻]	Increase	Decrease	Remain the same

Question 10 9 Points

- a. Which has the greater frequency, FM or AM Radio Waves?
- FM

b. Which has the longer wavelength, Red or Blue?

Red

c. The region with the shortest wavelengths?

γ rays

- Question 11 6 Points
- a. When the nuclide ²¹⁸Po decays to ²¹⁴Pb, what kind of decay does ²¹⁸Po undergo? ⁴₂He (Alpha). The instability of ²¹⁸Po is probably due to the fact that it has too many protons.
- b. What type of radioactive decay would account for the transformation of ${}^{51}Cr$ to ${}^{51}V$? ${}^{0}_{1}e$ (Positron)

¹³¹I (half-life, 8.04 days) is used as a treatment for thyroid cancer. How many Question 12 3 Points milligrams of a 32 milligram sample of 131 Will remain after 32.16 days?

$$\frac{32.16}{8.04}$$
 = 4

$$32 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 2$$

² Milligrams ¹³¹I

According to the following reaction, how many grams of oxygen gas are required for the Question 13 6 Points complete reaction of 21.3 grams of carbon monoxide?

carbon monoxide
$$(g)$$
 + oxygen (g) = carbon dioxide (g)

$$\frac{2CO + O_2 = 2CO_2}{21.3 \text{ g } CO} \frac{1 \text{ mol}}{28.01g} = 0.76 \text{ mol } CO$$

$$O.38 \text{ mol } O_2$$
 $\boxed{32g}$ = 12.2g

12.2 Grams of oxygen gas

An aqueous solution of hydrochloric acid is standardized by titration with a 0.453 M Question 14 7 Points solution of barium hydroxide.

> If 29.4 mL of base are required to neutralize 15.6 mL of the acid, what is the molarity of the hydrochloric acid solution?

2HCl + Ba(OH)₂ = BaCl₂ + 2 H₂O

$$0.453 \times 0.0294 = 1.33 \times 10^{-2} \text{ mol Ba}(OH)_2$$

1.71 M

How many grams of solid calcium hydroxide are needed to exactly neutralize 18.3 mL of a Question 15 8 Points 0.690 M perchloric acid solution?

Assume that the volume remains constant.

$$Ca(OH)_2 + 2HCIO_4 = Ca(CIO_4)_2 + 2H_2O$$

$$0.690 \times 0.0183 = 0.0126 \text{ mol } HCIO_4$$

$$0.0126 \text{ mol } HCIO_4 \qquad Ca(OH)_2$$

$$2 HCIO_4 \qquad = 6.31 \times 10^{-3} \text{ mol}$$

$$\frac{6.31\times10^{-3} \text{ mol } Ca(OH)_2}{1 \text{ mol}} = 0.468 \text{ g}$$