Question 1 Draw a Lewis structure for $\mathrm{F}_{2} \mathrm{CO}$ in which the central C atom obeys the octet rule, and answer the questions based on your drawing.

1. The number of lone pairs on the central C atom: 0
2. The central C atom forms 2 single bonds.

Question 2 Draw a Lewis structure for $\mathrm{PO}_{4}{ }^{3-}$ in which the central P atom obeys the octet rule, and
5 Points answer the questions based on your drawing.

1. The number of lone pairs on this structure is: 12
2. The central P atom forms O double bonds.

Question 3 Draw Lewis Structures for xenon trioxide and sulfur dioxide.
9 Points (Include any resonance structures if applicable)
XeO_{3}

SO_{2}

Question 4 Draw a Lewis diagram for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$. Use your diagram to answer the following 8 Points questions. Count double bonds as 2 bonds.

a. The number of $\mathbf{C}-\mathrm{H}$ bonds $=$ 5
b. The number of $\mathrm{O}-\mathrm{H}$ bonds $=1$
c. The number of $\boldsymbol{C}-\boldsymbol{C}$ bonds $=2$
d. The number of $\boldsymbol{C}-\mathbf{O}$ bonds $=3$
e. Total number of unshared pairs $=4$

Question 5 What is the name of the compound 8 Points with the formula:

1. PCl_{5} Phosphorous pentachloride
2. $\mathrm{O}_{2} \mathrm{~F}_{2}$ Dioxygen difluoride

What is the formula for:
3. Tetraphosphorus decaoxide $\mathrm{P}_{4} \mathrm{O}_{10}$
4. Carbon tetrabromide CBr_{4}
(a) $\ddot{O}=N=\ddot{o p}^{+}$
(b) :
(c) $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:
(d)

(f)

The following questions relate to the Lewis Structures depicted above
a. The molecule(s) whose electron pair geometry is linear: a, c
b. The bond angle about the $\mathbf{C l}$ atom in d: 109
c. The molecular geometry of d :

Trigonal pyramid
d. The molecular geometry of \mathbf{e} :
e. Number of molecules with a bent molecular geometry: 2
f. The three molecules with the \sim same bond angle: b, e,f
g. Of these* the one with a bond angle closest to 120° : f [*Answers for 6f]

Question 7 The molecules $\mathrm{CH}_{4}, \mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$ and CCl_{4} all have the same molecular geometry 6 Points tetrahedron - which if any of these molecules are nonpolar?

Nonpolar: CH_{4} and CCl_{4}
Question 8
6 Points

What is the bond angle about:
a. C2: 120
b. N3: 109

Question 9
9 Points

What is the bond angle about the numbered atoms?

1. 109
2. 120
3. 109

Question 10
6 Points

The order (most soluble to least soluble) of solubility in water for the following molecules is:
$\mathrm{NH}_{3}>\mathrm{CO}_{2}>\mathrm{O}_{2}$
What would you anticipate the order to be (most soluble to least soluble) in carbon tetrachloride, CCl_{4}
$\mathrm{O}_{2}>\mathrm{CO}_{2}>\mathrm{NH}_{3}$
In one sentence, justify your choice.
Water is polar, while CCl_{4} is nonpolar, expect solubility to reverse.

Question 11 Write the equilibrium constant expression, $K_{c,}$ for the following reactions:
6 Points
a) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
b) $2 \mathrm{SO}_{3}(\mathrm{~s})$
c) $\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Leftrightarrow 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
$\Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2} /\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]$
$\Leftrightarrow \quad \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NO}_{2}{ }^{-}\right]$

Question $12 \quad \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{HS}^{-}(\mathrm{aq}) \Leftrightarrow \mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$

$$
K=4.50 \times 10^{3} \text { at } 298 \mathrm{~K} .
$$

3 Points
Assuming that you start with equal concentrations of HNO_{2} and HS^{-}, and that no NO_{2}^{-}or $\mathrm{H}_{2} \mathrm{~S}$ is initially present, which of the following best describes the equilibrium system?

- Appreciable quantities of all species are present at equilibrium.
- The forward reaction is favored at equilibrium.
- The reverse reaction is favored at equilibrium.

Question 13 Consider the following system at equilibrium at 298 K :
9 Points
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOBr}(\mathrm{g})$
When some $\mathrm{Br}_{2}(g)$ is removed from the equilibrium system at constant temperature:
The reaction must:

- Run in the forward direction.
- Run in the reverse direction.
- Remain the same.

The concentration of NO will:

- Remain the same.
- Increase.
- Decrease.

The equilibrium constant K will:

- Remain the same.
- Increase.
- Decrease.

Question 14 Consider the following system at equilibrium at 698 K :
6 Points

$$
2 \mathrm{HI}(\mathrm{~g})+2.49 \mathrm{kcal} \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

If the temperature on the equilibrium system is suddenly decreased:

The concentration of I_{2} will:

- Remain the same.
- Increase.
- Decrease.

The equilibrium constant K will:

- Remain the same.
- Increase.
- Decrease.

