iA	IIA	The Periodic Table															I/IIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												Mi/	IVA	VA	V/A	V/IA	4.00
Li 3	Be 4											B 5	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											$\begin{aligned} & \hline \mathrm{Al} \\ & 13 \end{aligned}$	Si	P	S	Cl_{17}	
22.99	24.31	IIM	I/VB	VB	V/B	V/IB	V/IM	V/IM	V/IM	18	$1 / 8$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	$\mathbf{1 5 7 . 2 5}$	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	$\mathbf{1 6 8 . 9 3}$	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formulae and Constants:

$$
\left.\begin{array}{l}
\mathrm{pH}=\mathrm{pK} \\
\mathrm{a}
\end{array}+\log _{10}\left\{\left[\mathrm{~A}^{-}\right] /[\mathrm{HA}]\right\}\right\}
$$

\square
\qquad First

Question 1 Consider the following system at equilibrium at 298 K :
5 Points $\quad 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CCl}_{4}(\mathrm{~g})$
When some $\mathrm{CCl}_{4}(\mathrm{~g})$ is removed from the equilibrium system at constant temperature:
(No partial credit)
The reaction must:

- Run in the forward direction.
- Run in the reverse direction.
and The concentration of CH_{4} will:
- Remain the same.
- Remain the same.
- Increase.
- Decrease.

Question 2 Consider the following system at equilibrium at 298 K :
5 Points
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+43.2 \mathrm{kcal} \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
If the temperature is suddenly decreased:
(No partial credit)

The reaction must:

- Run in the forward direction.
- Run in the reverse direction.
- Remain the same.
and The concentration of O_{2} will:
- Remain the same.
- Increase.
- Decrease.

Question 3 Consider the following system at equilibrium at 500 K :
5 Points
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the pressure is suddenly decreased:
(No partial credit)
The reaction must:

- Run in the forward direction.
- Run in the reverse direction.
and The concentration of Cl_{2} will:
- Remain the same.
- Remain the same.
- Increase.
- Decrease.

Question 4 Consider the following system at equilibrium at 1150 K :

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+47.3 \mathrm{kcal}
$$

The production of $\mathrm{SO}_{2}(\mathrm{~g})$ is favored by
Indicate True (T) or False (F) for each of the following:
a. Decreasing the temperature. T
d. Adding SO_{3}

T
b. Decreasing the pressure. $\quad T$
e. Adding O_{2}. F
c. Increasing the volume. T

Question 5
8 Points
a. HCOOH 2
b. $\mathrm{NH}_{3} 4$
c. $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$
d. HBr 1

Question 6 Circle the appropriate answers 6 Points

Acid	K_{a}
A	7.9×10^{-7}
B	1.8×10^{-5}
C	4.2×10^{-7}

1. Strong Acid
2. Weak Acid
3. Strong Base
4. Weak Base
5. The acid with the greatest $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ in a 0.10 M aqueous solution is: $A \quad B \quad C$
6. The acid with the smallest pKa: A B C
7. The acid with the smallest pOH in a 0.10 M aqueous solution is: $A \quad B \quad C$

Question 7 The pKa for HCN is 9.39 while the Ka for HClO is 3.5×10^{-8}.
6 Points
a. What is the pKa for HClO ?
7.46
b. Which is the stronger acid?
HClO

Question 8 The hydroxide concentration in an aqueous solution is $4.5 \times 10^{-2} \mathrm{M} @ 25^{\circ} \mathrm{C}$ 9 Points
a. The hydronium ion concentration is:
$2.2 \times 10^{-13} \mathrm{M}$
b. The pH of this solution is:
12.65
c. The pOH is:
1.35

Question 9 In the following net ionic equation, identify each reactant as either a Bronsted-Lowry 12 Points acid or a Bronsted-Lowry base.
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$

Bronsted- Lowry Acid.
b. OH^{-}

Bronsted- Lowry Base.
Give the formula for:
c. Conjugate acid of $\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
d. Conjugate base of $\mathrm{HPO}_{4}{ }^{2-}$
$\mathrm{PO}_{4} 3^{-}$

Question 10 A buffer solution is 0.225 M in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and 0.499 M in $\mathrm{NaHC}_{2} \mathrm{O}_{4}$. If pKa for $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
4 Points
you must show work to obtain credit.

$$
\mathrm{pH}=1.29+\log 10\{0.499 / 0.225\}
$$

Question 11 A small amount of strong acid is added to a buffer made from HNO_{2} and NaNO_{2}. What changes if any will occur to the solution?

- Circle the appropriate answer

a. pH	Increase	Decrease	Unchanged
b. $\left[\mathrm{NO}_{2}{ }^{-}\right]$	Increase	Decrease	Unchanged
c. $\left[\mathrm{HNO}_{2}\right]$	Increase	Decrease	Unchanged
d. $\left[\mathrm{OH}^{-}\right]$	Increase	Decrease	Unchanged

Question 12 Calcium hydroxide is standardized by titration with 0.320 M solution of nitric acid. If 6 Points 38.5 mL of base are required to neutralize 23.4 mL of acid, what is the molarity of the calcium hydroxide solution?

Question 13 How many grams of solid barium hydroxide are needed to exactly neutralize 25.4 mL of a 1.49 M hydrochloric acid solution? Assume that the volume remains constant.

$$
\begin{aligned}
& \mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl}=\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 1.49 \times 0.0254=3.78 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}
\end{aligned}
$$

$$
\begin{array}{l|l}
3.78 \times 10^{-2} \mathrm{~mol} \mathrm{HCl} & 1 \mathrm{Ba}(\mathrm{OH})_{2} \\
\hline & 2 \mathrm{HCl}
\end{array}=1.89 \times 10^{-2} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}
$$

$1.89 \times 10^{-2} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$	171.35 g
	1 mol

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3}=\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 0.320 \times 0.0234=7.48 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3} \\
& \begin{array}{l|c}
7.48 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3} & 1 \mathrm{Ca}(\mathrm{OH})_{2} \\
\hline & 2 \mathrm{HNO}_{3}
\end{array}=3.74 \times 10^{-3} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
& M=3.74 \times 10^{-3} / 0.0385
\end{aligned}
$$

Question 14 How many grams of chloric acid will be formed upon the complete reaction of 29.0 grams of water with excess chlorine gas?

Chlorine (g) + water (I) = hydrochloric acid (aq) + chloric acid $\left(\mathrm{HClO}_{3}\right)$

$$
3 \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O}=5 \mathrm{HCl}+\mathrm{HClO}_{3}
$$

$$
\begin{array}{l|c}
29 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{~mol} \\
\hline & 18.02 \mathrm{~g}
\end{array}=1.61 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{c|c}
1.61 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} & 1 \mathrm{HClO}_{3} \\
\hline & 3 \mathrm{H}_{2} \mathrm{O}
\end{array}=0.536 \mathrm{~mol} \mathrm{HClO}_{3}
$$

Question 15 What mass of iron in grams would produce 27.7 L of hydrogen gas ($P=1 \mathrm{~atm}, \mathrm{~T}=25^{\circ} \mathrm{C}$) when it reacts completely with excess hydrochloric acid?

> Iron $(s)+$ hydrochloric acid $(a q)=\operatorname{iron}(I I)$ chloride $(a q)+$ hydrogen (g) $R=0.08205 \mathrm{~L} \cdot a+m \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$

$$
\mathrm{Fe}+2 \mathrm{HCl}=\mathrm{FeCl}_{2}+\mathrm{H}_{2}
$$

