IA H 1	The Periodic Table								VIIIA He 2								
1.01	IIA IVA VA VIA VIIA 4.00																
Li	Be 4											B	C	N	8	F	Ne 10
6.94	9.01											9 10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg	2										AI	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB .	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	L	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(/	101.07	102.91		107.87		114.82		121.76	1.1	126.90	
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
		138.91	178.49	180.95		186.21		1111	195.08			204.38		208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)	1		
				0.		ALC:	Dur			0.4		Du	11.		-	M	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58 140.12	59	60 144.24	61 (145)	62 150.36	63	64 157.25	65 158.93	66 162 50	67 164.93	68 167 26	69 168 93	70 173.04	71 174 97
				Th	Pa	U		Pu		2	Bk	Cf		Fm	Md		
				90	91	92	Np 93	94	Am 95	2m	97	98	Es 99	100	101	No 102	Lr 103
					231.04			(240)	243.06	(247)	(248)		252.08		(257)	259.10	262.11

Some Useful Formulae and Constants:

$$pH = pK_a + \log_{10}\{[A^-]/[HA]\}$$

$$K_w = 1 \times 10^{-14} @ 25^{\circ}C$$

SID	Last		First					
Question 1 5 Points	Consider the following system at equilibrium at 298 K: 2 $CH_2Cl_2(g) \Leftrightarrow CH_4(g) + CCl_4(g)$ When some $CCl_4(g)$ is removed from the equilibrium system at constant temperature:							
	<i>(No partial credit)</i> The reaction must:	and	The concentration of CH ₄ will:					
	Run in the forward direction.		Remain the same.					
	Run in the reverse direction.		Increase.					
	Remain the same.		Decrease.					
Question 2 5 Points	Consider the following system at equilibr N₂(g) + O₂(g) + 43.2 kcal ⇔ 2 NO(g) If the temperature is suddenly decrease (No partial credit)		298 K:					
	The reaction must:	and	The concentration of O_2 will:					
	Run in the forward direction.		Remain the same.					
	Run in the reverse direction.		□ Increase.					
	Remain the same.		Decrease.					
Question 3 5 Points	Consider the following system at equilibr $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$ If the pressure is suddenly decreased : (No partial credit)	rium at i	500 K:					
	The reaction must:	and	The concentration of Cl 2 will:					
	Run in the forward direction.		Remain the same.					
	Run in the reverse direction.		□ Increase.					
	Remain the same.		 Decrease. 					
Question 4 10 Points	Consider the following system at equilibres $2 SO_3(g) \Leftrightarrow 2 SO_3(g)$ The production of $SO_2(g)$ is favored by Indicate True (T) or False (F) for each of	5 0 2(g) +	+ O ₂ (g) + 47.3 kcal					
	a. Decreasing the temperature. T		d. Adding SO₃ T					
	b. Decreasing the pressure.		e. Adding O ₂ . F					
	c. Increasing the volume.		-					
	· · · · · · · · · · · · · · · · · · ·							

Question 5	а. НСООН	2	1. Strong Acid									
8 Points	b. NH ₃	4	2. Weak Acid									
	c. C 5H11N	4	3 . Strong Base									
	d. HBr	1	4. Weak Base									
Question 6 6 Points	Circle the appropriate ar Acid K _a A 7.9×1 B 1.8×10 C 4.2×1	0 ⁻⁷ 2. 0 ⁻⁵ 3	The acid with the greatest [H₃O*] in a 0.10 M aqueous solution is: . The acid with the smallest pKa : . The acid with the smallest pOH in a 0.10 M aqueous solution is:	A B C A B C A B C								
Question 7 6 Points	The pKa for HCN is 9.3 9 while the Ka for HClO is 3.5x10 ⁻⁸ .											
	a. What is the p		7.46									
	b. Which is the stronger acid? HCIO											
Question 8 9 Points	The hydroxide concentration in an aqueous solution is 4 .5x10 ⁻² M @ 25°C											
	a. The hydronium ion concentration is: 2.2×10 ⁻¹³ M											
	b. The pH of this so	lution is:	12.65									
	c. The pOH is:		1.35									
Question 9 12 Points	In the following net ionic equation, identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base . $C_5H_5NH^+ + OH^- \Leftrightarrow C_5H_5N(aq) + H_2O(I)$											
	a. C₅H₅NH ⁺	Bronsted-Lo	ed-Lowry <mark>Acid</mark> .									
	b. OH ⁻	Bronsted-Lo	ed-Lowry <mark>Base</mark> .									
	Give the formula for: c. Conjugate acid of	HPO4 ²⁻	H ₂ PO ₄ ⁻									
	d. Conjugate base of	HPO4 ²⁻	PO₄3 ⁻									
Question 10 4 Points	A buffer solution is 0.22 1.29, what is the pH of You must show work to obtain cre	this buffer solu	and 0.499 M in NaHC 2 O 4. If pKa for tion?	r H 2 C 2O4 is								

рН = 1.64

Question 11 A small amount of **strong acid** is added to a **buffer** made from HNO₂ and NaNO₂. What ^{8 Points} changes if any will occur to the solution?

- Circle the appropriate answer

a.	рН	Increase	Decrease	Unchanged
b.	[NO ₂ ⁻]	Increase	Decrease	Unchanged
c.	[HNO ₂]	Increase	Decrease	Unchanged
d.	[OH ⁻]	Increase	Decrease	Unchanged

Question 12 Calcium hydroxide is standardized by titration with 0.320 M solution of nitric acid. If ^{6 Points} 38.5 mL of base are required to neutralize 23.4 mL of acid, what is the molarity of the calcium hydroxide solution?

 $Ca(OH)_2 + 2 HNO_3 = Ca(NO_3)_2 + 2 H_2O$

0.320 x 0.0234 = 7.48x10⁻³ mol HNO₃

M = 3.74×10⁻³/0.0385

0.0972 M

Question 13 How many grams of solid barium hydroxide are needed to exactly neutralize 25.4 mL of ^{5 Points} a 1.49 M hydrochloric acid solution? Assume that the volume remains constant.

$$Ba(OH)_2 + 2 HCI = BaCI_2 + 2 H_2O$$

Question 14 How many grams of chloric acid will be formed upon the complete reaction of 29.0 grams 6 Points of water with excess chlorine gas?

Chlorine (g) + water (l) = hydrochloric acid (aq) + chloric acid (HClO₃)

Question 15 What mass of iron in grams would produce 27.7 L of hydrogen gas (P = 1 atm, T = 25°C) ^{5 Points} when it reacts completely with excess hydrochloric acid?

> Iron (s) + hydrochloric acid (aq) = iron(II) chloride (aq) + hydrogen (g) $R = 0.08205 L.atm.K^{-1}.mol^{-1}$

$$Fe + 2 HCl = FeCl_2 + H_2$$

$$PV = nRT n = PV/RT$$

$$n = \frac{1 \times 27.2}{0.08205 \times 198} = 1.13 \text{ mol } H_2$$

$$\frac{1.13 \text{ mol } H_2}{1 \text{ H}_2} = 1.13 \text{ mol } Fe$$

$$\frac{1.13 \text{ mol } Fe}{1 \text{ H}_2} = 55.85 \text{ g}}{1 \text{ mol}} =$$

<mark>63.3</mark> g

