iA	IIA																V/IVA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$		The Periodic Table															He 2
1.01												IIIA	IVA	VA	V/A	V/IA	4.00
Li_{3}	Be 4											B	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \hline \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	$\begin{aligned} & \hline \mathrm{Si} \\ & 14 \end{aligned}$	$\begin{gathered} P \\ \hline 15 \end{gathered}$	$\begin{gathered} \hline S \\ 16 \end{gathered}$	Cl 17	
22.99	24.31	$\ldots \mathrm{M}$	IVB	VB	V/B	V/IB	V/WB	V/IM	V/WB	18	/is	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	38.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce 58 140.12	Pr 59 140.91	$\begin{array}{\|c\|} \hline \mathrm{Nd} \\ 60 \\ 144.24 \end{array}$	$\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Sm } \\ 62 \\ 150.36 \\ \hline \end{array}$	63 152.97	$\begin{array}{\|c\|} \hline \text { Gd } \\ 64 \\ 157.25 \end{array}$	$\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ 158.93 \end{array}$	$\begin{array}{\|c\|} \hline \text { Dy } \\ 66 \\ 162.50 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Ho} \\ 67 \\ 164.93 \end{gathered}$	68 167.26	$\begin{array}{\|c\|} \hline \text { Tm } \\ 69 \\ 168.93 \\ \hline \end{array}$	Yb 70 173.04	$\begin{array}{\|c\|} \hline \text { Lu } \\ 71 \\ 174.97 \\ \hline \end{array}$
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

\square
\qquad Firs \dagger

Question 1 To answer the questions, interpret the following Lewis diagram for NO_{2}^{-}.
8 Points With respect to the central nitrogen atom:
a) The number of lone pair 1
b) The number of single bond 1
c) The number of double bond 1
d) The number of resonance structures 2

Question 2 Draw a Lewis structure for each of the following where the central atom obeys the octet 16 Points rule.

Question 3 8 Points

Draw a Lewis structure (on scrap paper provided) for $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$. Use your diagram to answer the following questions.
a) The number of $\mathrm{C}-\mathrm{H}$ bonds $=$
b) The number of $C-O$ single bonds $=$ 2
c) The number of $C-C$ single bonds $=$ 1
a) The number of $\mathrm{C}-\mathrm{O}$ double bonds $=$

Question $4 \quad \mathrm{CH}_{3} \mathrm{COO}^{-}$has resonance structures - draw them. 8 Points

Question 5 What is the name of the compound with 8 Points the formula:
a) $\mathrm{N}_{2} \mathrm{O}_{4}$ Dinitrogen tetraoxide
b) PCl_{5} Phosphorus pentachloride

What is the formula for:
a) Sulfur trioxide SO_{3}
b) Carbon tetrachloride CCl_{4}

Question 6 6 Points

What is the bond angle about:
a) 1: 180°
b) $2: 120^{\circ}$
c) 3: 109°

Question 7 6 Points

What is the bond angle about the following atoms?

O3	$\sim 109^{\circ}$
C4	109°
C5	120°

Question 8 16 Points

A

D

B

E

$$
\ddot{O}=\ddot{\mathrm{s}}=\ddot{0}
$$

C

F

The following questions relate to the Lewis Structures depicted above
i. The number of molecules that disobey the Octet Rule:
ii. D, E and F - the one with the smallest bond angle:

D
iii. The molecular geometry of D :

Bent/Angular (109°)
iv. The molecular geometry of E :

Bent/Angular (120°)
v. The number of molecules with a bond angle of $\sim 120^{\circ}$:
vi. D, E and F - the one that is non polar:
vii. B-Polar or non polar?

Polar
Trigonal planar

Question 9 5 Points
$\mathrm{HClO}(\mathrm{aq})+\mathrm{CN}^{-} \Leftrightarrow \mathrm{ClO}^{-}+\mathrm{HCN}(\mathrm{aq}) \quad \mathrm{K}=87.5$ at 298 K.
Assuming that you start with equal concentrations of HClO and CN^{-}, and that no ClO^{-}or HCN is initially present, which of the following best describes the equilibrium system?
a) The forward reaction is favored at equilibrium.
b) Appreciable quantities of all species are present at equilibrium.
c) The reverse reaction is favored at equilibrium.

Question 10 Write the equilibrium constant expression, K, for the following reactions:
a) $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$ $\mathrm{K}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CN}^{-}\right] /[\mathrm{HCN}]$
b) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ $K=\left[\mathrm{SO}_{3}\right]^{2} /\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$
c) $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AgCl}(\mathrm{s})$
$K=1 /\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$

Question 11 Which of the following molecules has the smallest bond angle?

5 Points

A

B

C

Circle your choice.

D

Question 12 In our discussion on the consequences of molecular polarity, the depiction below was used 5 Points to discuss:

a) Fabric softeners
e) Detergents
b) Micelle actions
f) EDTA use in salad dressings
c) Membranes
g) Lead poisoning
d) The dissolution process
h) Chelating therapy.

