IA H			T	- he	Pe						VIIIA He 2						
1.01	IIA	_				IIIA	IVA	VA	VIA	VIIA	4.00						
Li	Be	P										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	l,										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	Marine										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	2350		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
			77.70	W167 16	200	1906 2576		8280 - 1571 i		1000	3770 3001		3830 1240	T1000 2000			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
					5300	100	The second second			V 1				100			

58

Th

140.12 140.91

59

Pa

91

60

144.24

U

92

232.04 231.04 238.03 237.05

61

(145)

Np

93

62

150.36

94

63

152.97

Am

95

(240) 243.06

64

157.25

Cm

96

(247)

65

158.93

Bk

97

(248)

66

Cf

98

67

162.50 164.93 167.26

Es

99

(251) 252.08 257.10

68

Fm

100

69

Μd

101

(257)

71

Lr

103

70

168.93 173.04 174.97

No

102

259.10 262.11

Question 1 8 Points

To answer the questions, interpret the following Lewis diagram for NO₂-.

With respect to the central nitrogen atom:

- a) The number of lone pair
- 1

- b) The number of single bond
- 1
- c) The number of double bond
- 1

2

d) The number of **resonance** structures

Question 2 16 Points

Draw a Lewis structure for each of the following where the central atom obeys the octet rule.

CIO4

HCN

HFCO

CO

Draw a Lewis structure (on scrap paper provided) for CH3COOCH3. Use your diagram to Question 3 8 Points answer the following questions.

- a) The number of C-H bonds =
- 6
- b) The number of C-O single bonds =
- 2
- c) The number of C-C single bonds =
- 1
- a) The number of C-O double bonds =
- 1

Question 4 8 Points

CH₃COO has resonance structures - draw them.

Question 5 8 Points

What is the name of the compound with the formula:

- a) N₂O₄ Dinitrogen tetraoxide
- b) **PCl**₅ Phosphorus pentachloride

What is the formula for:

- Sulfur trioxide
- 50₃
- Carbon tetrachloride CCl4

What is the bond angle about:

- a) 1: 180°
- b) **2**: 120°
- c) **3**: 109°

Question 7 6 Points

What is the **bond angle** about the following atoms?

Question 8

В

<u>ö=</u>==ö

The following questions relate to the Lewis Structures depicted above

- i. The number of molecules that disobey the Octet Rule: 2
- ii. D, E and F the one with the smallest bond angle:
- iii. The molecular geometry of D:

 Bent/Angular (109°)
- iv. The molecular geometry of E:

 Bent/Angular (120°)
- v. The **number** of **molecules** with a bond angle of ~120°:
- vi. D, E and F the one that is non polar:
- vii. B Polar or non polar?
- viii. The Electron Pair Geometry of C: Trigonal planar

Question 9 5 Points

$$HClO(aq) + CN^{-} \Leftrightarrow ClO^{-} + HCN(aq)$$

Assuming that you start with equal concentrations of HCIO and CN^- , and that no CIO^- or HCN is initially present, which of the following best describes the equilibrium system?

- a) The forward reaction is favored at equilibrium.
- b) Appreciable quantities of all species are present at equilibrium.
- c) The reverse reaction is favored at equilibrium.

Question 10 Write the equilibrium constant expression, K, for the following reactions: 9 Points

a)
$$HCN(aq) + H_2O(1) \Leftrightarrow H_3O^+ + CN^-$$

$$K = [H_3O^{\dagger}](CN^{-}]/[HCN]$$

b)
$$2 SO_2(g) + O_2(g) \Leftrightarrow 2 SO_3(g)$$

$$K = [SO_3]^2/[SO_2]^2[O_2]$$

c)
$$Aq^+ + Cl^- \Leftrightarrow AqCl(s)$$

$$K = 1/[Ag^{\dagger}][Cl^{-}]$$

Question 11 Which of the following molecules has the smallest bond angle? 5 Points

Circle your choice.

Question 12 In our discussion on the consequences of molecular polarity, the depiction below was used 5 Points to discuss:

- a) Fabric softeners
- b) Micelle actions
- c) Membranes
- d) The dissolution process

- e) Detergents
- f) EDTA use in salad dressings
- g) Lead poisoning
- h) Chelating therapy.