Chem 110	Fall 2010	E×am III	Whelan		
SID	Last Key	First Answei	r		
Question 1 8 Points	Consider the following system at equilibrium at 298 K: N₂(g) + O₂(g) + 43.2 kcal ⇔ 2 NO(g) The production of NO(g) is favored by:				
	Indicate True or False for each of the following Indicate True or False for each of the following Increasing the temperature.		False		
	Increasing the volume.	False 🛛 Removing O ₂ .	False		
Question 2 8 Points	Consider the following system at equilibrium at 346 K: CO(g) + Br₂(g) ⇔ COBr₂(g) + 18.2 kcal				
	The production of COBr₂(g) is favo	red by:			
	Indicate True or False for each of the following Decreasing the temperature.		True		
	Decreasing the pressure.	False 🛛 Removing COBr ₂ .	True		
Question 3 4 Points					
	HF(aq) + H₂O(I) ⇔ H₃O⁺ + F⁻			
Question 4 8 Points	Assign each species on the left to a	a category on the right .			
	a. C₂H₅NH₂	4 1. Strong Acid			
	b. HF	2 2. Weak Acid			
	c. NH ₃	3 . Strong Base			
	d. Ba(OH) ₂	3 4. Weak Base			
Question 5 6 Points	•		25°C		
o romis	a. The hydronium ion concentro	ation is: 2.24×10 ⁻¹¹ M			
	b. The pH of this solution is:	10.65			
	c. The pOH is:	3.35			
Question 6 6 Points	Arrange the following solutions in o 1 = least acidic ; 3 = most acidic	rder of increasing acidity:			
	1. [H ₃ O ⁺] = 1×10 ⁻⁶ M	2			
	2. pOH = 3	1			
	3. [OH⁻] = 1×10 ⁻⁹ M	3			

Question 7 8 Points	In the following net ionic equation , identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base:			
	$CH_3CO_2H(aq) + H_2O(I) \Leftrightarrow CH_3CO_2^- + H_3O^+$			
	Bronsted-Lowry acid: BLA		ronsted-Lowry base: BLB	
	1. CH₃CO₂H	BLA	3. CH₃CO₂ ⁻	BLB
	2. H ₂ O	BLB	4. H₃O⁺	BLA
Question 8	Give the formula for:			
6 Points	1. TI	he conjugate acid of H ₂ PO ₄	H ₃ PO ₄	
	2. TI	he conjugate base of H2PO	4 ⁻ HPO4 ²⁻	
Question 9 4 Points	Which of the following aqueous solutions are buffer solutions?			
	□ 0.19 M KOH + 0.	25 M KCl	□ 0.17M CH ₃ COOH+	0.17M CH ₃ COOK
	0.34 M NH4Br	+ 0.38 M NH ₃	□ 0.22 M HI + 0.19 N	NaI
	0.34 M Ba(ClO ₄) ₂ + 0.23 M Ba(NO ₃) ₂			
Question 10 4 Points) A buffer solution that is 0.354 M in HNO ₂ and 0.354 M in NaNO ₂ has a pH of 3.35 .			
	Addition of which of the following would increase the capacity of the buffer for added H_3O^2 ?			buffer for added
	□ NaNO₂	I	both HNO ₂ and N	aNO ₂
	🗅 pure water	I	None of the these	

Question 11 A buffer solution is 0.422 M in HCN and 0.273 M in KCN. If Ka for HCN is 4.0x10⁻¹⁰, what is the pH of this buffer solution?

□ HNO₂

pH = pka -
$$\log_{10} \frac{[CN^{-}]}{[HCN]}$$

pH = - $\log_{10}(4.0 \times 10^{-10}) - \log_{10} \frac{0.273}{0.422}$

pH = 9.21

Question 12 A small amount of **strong base** is added to a **buffer** made from HNO_2 and $NaNO_2$. What changes if any will occur to the solution?

-	Circle	the	appropriate	answer
---	--------	-----	-------------	--------

a.	рН	Increase	Decrease	Unchanged
b.	[NO ₂ ⁻]	Increase	Decrease	Unchanged
c.	[HNO ₂]	Increase	Decrease	Unchanged
d.	[OH ⁻]	Increase	Decrease	Unchanged

Question 13 How many grams of copper(II) chloride are there in **48.9 mL** of an aqueous solution that ^{6 Points} has a concentration of **0.196 M**? Must show work

$$CuCl_2$$
: 63.55 + 2(33.45) = **134.45 g.mol**⁻¹

 $\frac{9.58 \times 10^{-3} \text{ mol } \text{CuCl}_2}{134.45 \text{ g}} = 1.29 \text{ g}$

1.29 g

Question 14 ^{6 Points} You wish to make a 0.233 M nitric acid solution from a stock solution of 6.00 M nitric acid. How much concentrated acid must you add to obtain a total volume of 75.0 mL of the dilute solution? Must show work

#mol HNO₃ = 0.233 x 0.075 = 1.75x10⁻² mol HNO₃

$$M = \frac{\# \text{ mol } HNO_3}{V(I)}$$

$$6.00 = \frac{1.75 \times 10^{-2} \text{ mol } HNO_3}{V(I)}$$

$$V = 0.00291 \text{ L}$$

2.91 mL

Question 15 According to the following reaction, how many moles of bromine trifluoride are necessary ^{5 Points} to form 0.162 moles fluorine gas? bromine trifluoride (g) = bromine (g) + fluorine (g) Must show work and include a balanced chemical equation.

$$2 BrF_3(g) = Br_2 + 3 F_2(g)$$

Question 16 An aqueous solution of **barium hydroxide** is standardized by titration with a **0.264** M solution of **nitric acid**.

If 23.6 mL of base are required to neutralize 23.3 mL of the acid, what is the molarity of the **barium hydroxide** solution?

Must show work and include a balanced chemical equation.

Ba(OH)₂ + **2 HNO**₃ = **Ba(NO**₃)₂ + **2 H**₂O 23.6 mL 23.3 mL 0.264M

mol HNO₃ = 0.264 × 0.0233 = 6.15×10⁻³ mol HNO₃

 $M = \frac{3.07 \times 10^{-3} \text{ mol Ba}(OH)_2}{0.0236} = 0.130$

0.130 M

Exam III Score	