

Last \qquad

Question 1 Consider the following system at equilibrium at 298 K :

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+43.2 \mathrm{kcal} \Leftrightarrow 2 \mathrm{NO}(\mathrm{~g})
$$

The production of $\mathrm{NO}(\mathrm{g})$ is favored by:
Indicate True or False for each of the following:

- Increasing the temperature. True
- Increasing the volume. False

False
False

Question 2 Consider the following system at equilibrium at 346 K :

$\mathrm{CO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{COBr}_{2}(\mathrm{~g})+18.2 \mathrm{kcal}$

The production of $\mathrm{COBr}_{2}(g)$ is favored by:
Indicate True or False for each of the following:

- Decreasing the temperature. True
- Decreasing the pressure. False
- Adding Br_{2}.
- Removing COBr_{2}. True

Question 3 Write a net ionic equation to show that hydrofluoric acid, HF, behaves as an acid in water. 4 Points

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}
$$

Question 4 Assign each species on the left to a category on the right.
8 Points
a. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
4

1. Strong Acid
b. HF
2
2. Weak Acid
c. NH_{3}
4
3. Strong Base
d. $\mathrm{Ba}(\mathrm{OH})_{2}$
3
4. Weak Base

Question 5 The hydroxide concentration in an aqueous solution is $4.47 \times 10^{-4} \mathrm{M} @ 25^{\circ} \mathrm{C}$ 6 Points
a. The hydronium ion concentration is:
$2.24 \times 10^{-11} \mathrm{M}$
b. The pH of this solution is:
10.65
c. The pOH is:

Question 6 Arrange the following solutions in order of increasing acidity:
6 Points 1 = least acidic ; 3 = most acidic

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-6} \mathrm{M} 2$
2. $\mathrm{pOH}=3 \quad 1$
3. $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-9} \mathrm{M} \quad 3$

Question 7
8 Points

In the following net ionic equation, identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base:
Bronsted-Lowry acid: BLA

$$
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow \underset{\text { Bronsted-Lowry base: BLB }}{\Leftrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}}
$$

1. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
BLA
2. $\mathrm{H}_{2} \mathrm{O}$
BLB
3. $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$
BLB
4. $\mathrm{H}_{3} \mathrm{O}^{+}$
BLA

Question 8 Give the formula for:

6 Points

Question 9 4 Points

1. The conjugate acid of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad \mathrm{H}_{3} \mathrm{PO}_{4}$
2. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad \mathrm{HPO}_{4}{ }^{2-}$

Which of the following aqueous solutions are buffer solutions?

- $0.19 \mathrm{M} \mathrm{KOH}+0.25 \mathrm{M} \mathrm{KCl}$
- $0.34 \mathrm{M} \mathrm{NH}^{2} \mathrm{Br}+0.38 \mathrm{M} \mathrm{NH}_{3}$
- $0.34 \mathrm{M} \mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}+0.23 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

Question 10 A buffer solution that is $0.354 \mathrm{M} \mathrm{in}_{\mathrm{HNO}}^{2}$ and 0.354 M in NaNO_{2} has a pH of 3.35 .
4 Points

Addition of which of the following would increase the capacity of the buffer for added $\mathrm{H}_{3} \mathrm{O}^{+}$?

- NaNO_{2} both HNO_{2} and NaNO_{2}
- pure water
- None of the these
- HNO_{2}

Question 11 A buffer solution is 0.422 M in HCN and 0.273 M in KCN . If Ka for HCN is 4.0×10^{-10},
5 Points what is the pH of this buffer solution?

$$
\begin{array}{r}
\mathrm{pH}=p k a-\log _{10} \frac{\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]} \\
\mathrm{pH}=-\log _{10}\left(4.0 \times 10^{-10}\right)-\log _{10} \frac{0.273}{0.422}
\end{array}
$$

$$
\mathrm{pH}=9.21
$$

Question 12 A small amount of strong base is added to a buffer made from HNO_{2} and NaNO_{2}. What

- Circle the appropriate answer

a. pH	Increase	Decrease	Unchanged
b. $\left[\mathrm{NO}_{2}{ }^{-}\right]$	Increase	Decrease	Unchanged
c. $\left[\mathrm{HNO}_{2}\right]$	Increase	Decrease	Unchanged
d. $\left[\mathrm{OH}^{-}\right]$	Increase	Decrease	Unchanged

Question 13 How many grams of copper(II) chloride are there in 48.9 mL of an aqueous solution that 6 Points has a concentration of 0.196 M ?
Must show work

$$
\mathrm{CuCl}_{2}: 63.55+2(33.45)=134.45 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
$$

$$
\# \mathrm{~mol} \mathrm{CuCl} 2=0.196 \times 0.0489=9.58 \times 10^{-3} \mathrm{~mol} \mathrm{CuCl}_{2}
$$

$9.58 \times 10^{-3} \mathrm{~mol} \mathrm{CuCl}_{2}$	134.45 g
	1 mol

Question 14 You wish to make a 0.233 M nitric acid solution from a stock solution of 6.00 M nitric 6 Points acid. How much concentrated acid must you add to obtain a total volume of 75.0 mL of the dilute solution?
Must show work

$$
\begin{gathered}
\# \mathrm{~mol} \mathrm{HNO}_{3}=0.233 \times 0.075=1.75 \times 10^{-2} \mathrm{~mol} \mathrm{HNO}_{3} \\
M=\frac{\# \mathrm{~mol} \mathrm{HNO}}{3} \\
\mathrm{~V}(\mathrm{I}) \\
6.00= \\
\mathrm{V}=\frac{1.75 \times 10^{-2} \mathrm{~mol} \mathrm{HNO}_{3}}{\mathrm{~V}(\mathrm{I})} \\
\mathrm{V}
\end{gathered}
$$

Question 15 According to the following reaction, how many moles of bromine trifluoride are necessary
5 Points to form 0.162 moles fluorine gas? bromine trifluoride $(\mathrm{g})=$ bromine (g) + fluorine (g) Must show work and include a balanced chemical equation.

$$
2 \mathrm{BrF}_{3}(\mathrm{~g})=\mathrm{Br}_{2}+3 \mathrm{~F}_{2}(\mathrm{~g})
$$

$0.162 \mathrm{~mol} \mathrm{~F}_{2}$	$2 \mathrm{BrF}_{3}$
	$3 \mathrm{~F}_{2}$

Question 16 An aqueous solution of barium hydroxide is standardized by titration with a 0.264 M 8 Points solution of nitric acid.

If 23.6 mL of base are required to neutralize 23.3 mL of the acid, what is the molarity of the barium hydroxide solution?
Must show work and include a balanced chemical equation.

$$
\begin{aligned}
& \mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3}=\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& 23.6 \mathrm{~mL} \\
& 23.3 \mathrm{~mL} \\
& 0.264 \mathrm{M} \\
& \# \mathrm{~mol} \mathrm{HNO}_{3}=0.264 \times 0.0233=6.15 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3} \\
& \begin{array}{l|l}
6.15 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3} & 1 \mathrm{Ba}(\mathrm{OH})_{2} \\
\hline & 2 \mathrm{HNO}_{3}
\end{array}=3.07 \times 10^{-3} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2} \\
& M=\frac{3.07 \times 10^{-3} \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}}{0.0236}=0.130
\end{aligned}
$$

