41	4	4	_
Chem	1	1	u

Fall 2013

Exam III

Whelan

SID				

Last Key

First

Answer

Question 1 6 Points

a. Write a **net ionic equation** to show that **hydrosulfuric** acid, behaves as an acid in water

$$H_2S(aq) + H_2O(I)$$

b. Write a **net ionic equation** to show how **sodium hydroxide** behaves as a base in water.

Question 2 8 Points

a. HNO₃

1. Strong Acid

- ь. нсоон
- <u>2</u>

2. Weak Acid

- c. C_5H_5N
- 4

3. Strong Base

- d. NH₄⁺
- **2**

4. Weak Base

Question 3 4 Points

An aqueous solution has a hydroxide ion concentration of $1.0 \times 10^{-2} M$.

- a) What is the hydronium ion concentration in this solution?
- IXIO., W

b) Is this solution acidic, basic or neutral?

Basic

Question 4 6 Points

An aqueous solution has a pOH of 6

a) What is the **pH** of this solution?

- 8 M
- b) What is the hydronium ion concentration in this solution?c) What is the hydroxide ion concentration in this solution?
- 1×10-6 M

Question 5 6 Points

Arrange the following solutions in order of increasing acidity:

1 = least acidic; 3 = most acidic

a) Solution with a **pH** = 11

- ١
- b) Solution with a hydroxide ion concentration = 1×10^{-11} M
- 3
- c) Solution with a hydronium ion concentration = 1×10^{-9} M
- <u>ည</u>

Question 6 6 Points

The hydronium concentration in an aqueous solution is 3.51×10^{-2} M.

- a. The **hydroxide** ion concentration is:
- 2.82×10-13
- b. The **pH** of this solution is:
- 1.45

c. The **pOH** is:

12.55

Question 7 6 Points	a) For following net ionic equation: HClO(ag) + H₂O(l) ⇔ ClO⁻ + H₃O⁺						
	- Circle the appropriate answer - B-L = Bronsted Lowry						
	H₂O B-L Acid B-L	Base					
	CIO B-L Acid B-L	Base					
	b) The formula for the conjugate Base	of H₃O⁺ is:	Hao				
	c) The formula for the conjugate Ocid	of ClO - is:	HCPO				
Question 8	A buffer solution that is 0.436M in HCN and	0.436M in KCN has a	рН of 9.40 .				
	Addition of which of the following would incr H_3O^{+} ?	ease the capacity of	the buffer for add				
	(b) KCN	□ HCN					
	both HCN and KCN	□ pure water					
	□ none of these choices						
Question 9	Which of the following aqueous solutions are buffer solutions?						
4 roints	0.14M HF + 0.17M KF	□ 0.34M Ba(ClO ₄) ₂ + 0.25M BaI ₂				
	\Box 0.19M Ca(OH) ₂ + 0.21M CaCl ₂	0.34M NH4NO	₃ + 0.34M NH ₃				
	□ 0.25M HCl + 0.17M KCl						
Question 10	A buffer solution is made that is 0.472M in F	1 ₂ CO ₃ and 0.472M in N	laHCO₃.				
6 Points	a) Ka for H₂CO ₃ is 4.2×10 ⁻⁷ , what is the p⊦	l of the buffer solutio	n? 6.4				
	 b) Write the net ionic equation for the rea added to 1.00 L of the buffer solution. 	ction that occurs wher	n 0.129 mol NaOH i				
	H2CO3 (0g) + OH =	H20() .	HCD3				
Question 11	A buffer solution is 0.440M in HCN and 0.32	4M in NaCN . If Ka for	HCN is 4.0x10 ⁻¹⁰ ,				
6 Points	what is the pH of this buffer solution?	_					
	Must show work PH = - log10 (4.0110-10) + l	ON [HEN]					
	$= 9.397 + \log_{10}(\frac{0.31}{0.41})$	- - -					
	$= 9.397 + \log_{10}(0.736)$ $= 9.397 - 0.133$						
			pH = 9.26				

Question 12 6 Points

A small amount of **strong acid** is added to a **buffer** made from **HCN** and **NaCN**. What changes if any will occur to the following.

Choose from the following choices:

Increase significantly Decrease significantly

Increase Decrease Increase slightly Decrease slightly

a) pOH

b) [**HCN**]

Ancrease slightly

Question 13

The isotope $^{60}_{27}$ Co is but one of many isotopes whose Neutron/Proton ratio is too large.

- a) The only form of radioactive decay available to 6027Co is:
- b) The balanced nuclear equation for this decay: 60₂₇Co = -1C + 28N1

Question 14 6 Points

Write a balanced nuclear equation for the following:

- a) ²¹⁴82**Pb** undergoing beta decay:
- b) $^{28}{}_{15}\textbf{P}$ undergoing positron emission:
- c) 4120**Ca** undergoing electron capture:

$$\frac{28}{15}P = \frac{-10 + 28}{110}$$

$$\frac{28}{15}P = \frac{-10 + 28}{110}$$

$$= \frac{100 + 28}{110}$$

$$= \frac{100 + 28}{110}$$

Question 15

How many moles of water will be formed upon the complete reaction of 27.3 grams of sulfuric acid with excess zinc(II) hydroxide?

sulfuric acid (aq) + zinc(II) hydroxide (s) = zinc(II) sulfate (aq) + water (l)

For full credit you must show work and include a balanced chemical equation.

$$H_2SO_4(99) + Zn(OH)_2(99) = ZnSO_4(99) + 2H_2O(1)$$
27.39

$$H_{2}50_{4}: 2(1.01) + 32.07 + 4(16.00) = 98.09 g.mol^{-1}$$

$$27.39 + 1004 + 1009 = 0.278 + 1009$$

$$0.278 \text{ mol } H_2 SO_4 | 2 H_2 O = 0.557 \text{ mol } H_2 O$$

Question 16
8 Points

An aqueous solution of **barium hydroxide** is standardized by titration with a **0.140 M** solution of **hydrochloric acid**.

If 26.8 mL of base are required to neutralize 19.4 mL of the acid, what is the molarity of the barium hydroxide solution?

For full credit you must show work and include a balanced chemical equation.

Ba(oH)₂ + 2 HeD = Ba(
$$_2$$
 + 2 H₂O
26.8 mL 19.4 mL
0.140 M
mol HeP = 0.140 (0.0194) = 2.72 × 10⁻³ mol HeP
2.72 × 10⁻³ mol HeP | 1 Ba(oH)₂ = 1.36 × 10⁻³ mol Ba(oH)₂
2 HeD = 1.36 × 10⁻³ mol Ba(oH)₂

$$M = \frac{1.36 \times 10^{-3}}{0.0268} = 0.0507$$

0.0507 M

Question 17
6 Points

What volume of a 0.142 M solution of aluminum bromide contains the same number of moles of aluminum bromide as there are in 43.2 mL of a 0.124 M solution of aluminum bromide?

Must show work

mol
$$OBr_3 = 0.124(0.0432) = 5.36 \times 10^{-3}$$

mol $OBr_3 = M \times V(L)$
 $5.36 \times 10^{-3} = 0.142 \times V(L)$
 $V(L) = \frac{5.36 \times 10^{-3}}{0.142} = 0.0377$

0.0377

L