Chem 110	Fall 20	013 E	xam II	Whelan
SID	Last K	ey	First Answer	
Question 1 8 Points	To answer the questions, interpret the followi a) The number of lor		e pair on central atom	<u> </u>
	:0-S=0) The number of sing	-	
	-) The number of dou		<u> </u>
	d) The number of equ	ivalent Lewis structures	<u></u>
Question 2 8 Points	Draw a Lewis structure fo rule . O ₂	=	ng where the central atom o Carbon dioxide	beys the octet
	<u>ö</u> =ö		0 = <i>c</i> = 0	
	^{ClO3⁻} IÕI IÕ – Õ – ÕI]-	F2CO IFI IF - C=0	
Question 3 6 Points	draw a Lewis structure for NO_2^- in which the central N atom obeys the octet rule, and answer the guestions on the right based on your		number of unshared pairs (l e central N atom is: central N atom forms central N atom forms	single bonds.
Question 4 8 Points	Draw a Lewis structure for C_3H_8 H H H - C - C - C I I H H		ing organic molecules. HCOOH :0: H — C — O — H	
	CH₃COCH₃ H :0: H - C - C - I H	H 	$CH_{3}COONH_{2}$ $H : 0:$ $H - C - C - 0 - N -$ $H + H$	H

Question 5 6 Points	O3 has resonance structures - draw them.	
	$\ddot{o} - \ddot{o} = \ddot{o} \iff \ddot{o} = \ddot{o} - \ddot{o}$	
Question 6 8 Points	What is the name of the compound with the formula: a) N ₂ O <u>Jinikrogen Monocide</u> b) BBr ₃ <u>Boron Ribromide</u> b) Sulfur hexafluoride	
Question 7 6 Points	$H - C \equiv C - H + H + H + H + H + H + H + H + H + H$	
Question 8 6 Points	What is the predicted bond angle about: $H - \frac{1}{1} \begin{pmatrix} 0 \\ 2 \\ 1 \\ H \end{pmatrix} \begin{pmatrix} 0 \\ -1 \\ -2 \\ -2 \\ -3 \\ -3 \\ -1 \\ -1 \\ -1 \\ -2 \\ -1 \\ -1 \\ -1 \\ -1$	
Question 9 4 Points	What is the predicted bond angle about the following atoms a) Nitrogen 1 b) Nitrogen 2 ~ 109°	
Question 10 6 Points	 The Lewis Dot Structure for NOCI is depicted on the right. a) The electron pair geometry around N is: b) The molecular geometry around N is: 	

Question 11	The electron-pair geometry around the S atom in SBr2?			
8 Points	There is/are $\underline{2}$ lone pair(s) around the central atom, so the molecular geometry of the SBr ₂ molecule is predicted to be <u>ANGULAR BENT (~109</u>).			
	SBr2 is POLAR . (Polar/Nonpolar)			
Question 12 2 Points	In our discussion on the consequences of molecular polarity , the data shown below was used to discuss:			
	Solubility of Some a) Membranes			
	Common SubstancesCompoundSolubility in H2Ob)Micelle action			
	$\frac{g/100 \text{mL}}{\text{O}_2 \qquad 4.5 \times 10^{-3} 18^{\circ} \text{C}}$ c) Fabric softeners			
	N ₂ 2.0x10 ⁻³ 18°C (d) Like dissolves like			
	NH_3 89.5 0°C CO_2 0.179 18°C e) Detergents			
	HCI 72.1 20°C			
Question 13	ClO ⁻ (aq) + H ₂ O(l)⇔ HClO(aq) + OH ⁻ (aq) K = 2.86×10 ⁻⁷ at 298K.			
4 Points	Assuming you start with CIO ⁻ and no HCIO or OH ⁻ . circle those of the following that			
	Assuming you start with CIO ⁻ and no HCIO or OH ⁻ circle those of the following that			
	Assuming you start with ClO ⁻ and no HClO or OH ⁻ , circle those of the following that best describes the equilibrium system ?			
	best describes the equilibrium system?			
	best describes the equilibrium system ?			
	 best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. 			
Question 14	 best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The forward reaction is favored at equilibrium. 			
	 best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The forward reaction is favored at equilibrium. (d) Very little HClO will be present at equilibrium. 			
Question 14	 best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. (b) Appreciable quantities of all species are present at equilibrium. (c) The forward reaction is favored at equilibrium. (d) Very little HClO will be present at equilibrium. Write the equilibrium constant expression, K, for the following reactions: 			
Question 14	 best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. (b) Appreciable quantities of all species are present at equilibrium. (c) The forward reaction is favored at equilibrium. (d) Very little HClO will be present at equilibrium. (d) Very little HClO will be present at equilibrium. (e) Write the equilibrium constant expression, K, for the following reactions: (f) 2 NOCl(s) ⇔ 2 NO(g) + Cl₂(g) (f) K = [NO]² [Cl₂] [Cl₂] 			
Question 14 6 Points Question 15	best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The forward reaction is favored at equilibrium. (d) Very little HClO will be present at equilibrium. Write the equilibrium constant expression, K, for the following reactions: a) 2 NOCl(s) \Leftrightarrow 2 NO(g) + Cl ₂ (g) K = $\frac{[NO]^2 [CP_2]}{[H_3O^2][F^2]/[CHF]}$ b) HF(aq) + H ₂ O(l) \Leftrightarrow H ₃ O ⁺ (aq) + F ⁻ (aq) K = $\frac{[H_3O^2][F^2]/[CHF]}{[H_3O^2][F^2]/[CHF]}$			
Question 14 6 Points Question 15	best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The forward reaction is favored at equilibrium. (d) Very little HCIO will be present at equilibrium. Write the equilibrium constant expression, K, for the following reactions: a) 2 NOCI(s) \Leftrightarrow 2 NO(g) + Cl ₂ (g) K = $\frac{[NO]^{2}[CP_{2}]}{[H_{3}O^{2}][F_{2}]/[CHF_{2}]}$ b) HF(aq) + H ₂ O(l) \Leftrightarrow H ₃ O ⁺ (aq) + F ⁻ (aq) K = $\frac{[H_{3}O^{2}][F_{2}]/[CHF_{2}]}{[H_{3}O^{2}][F_{2}]/[CHF_{2}]}$ Consider the following system at equilibrium at 698K: H ₂ (g) + I ₂ (g) \Leftrightarrow 2HI(g)			
Question 14 6 Points Question 15	best describes the equilibrium system? (a) The reverse reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The forward reaction is favored at equilibrium. (d) Very little HClO will be present at equilibrium. Write the equilibrium constant expression, K, for the following reactions: a) 2 NOCl(s) \Leftrightarrow 2 NO(g) + Cl ₂ (g) K = $\frac{[NO]^{2} [Cl_{2}]}{[Ll_{3}O^{2}][Cl_{2}]}$ b) HF(aq) + H ₂ O(l) \Leftrightarrow H ₃ O ⁺ (aq) + F ⁻ (aq) K = $\frac{[NO]^{2} [Cl_{2}]}{[Ll_{3}O^{2}][Cl_{2}]}$ Consider the following system at equilibrium at 698K: H ₂ (g) + I ₂ (g) \Leftrightarrow 2HI(g) When some I ₂ (g) is added to the equilibrium system at constant temperature:			
Question 14 6 Points Question 15	best describes the equilibrium system?(a) The reverse reaction is favored at equilibrium.b) Appreciable quantities of all species are present at equilibrium.c) The forward reaction is favored at equilibrium.(d) Very little HClO will be present at equilibrium.(d) Very little HClO will be present at equilibrium.(e) Very little HClO will be present at equilibrium.(f) Very little HClO will be present at equilibrium.(f) Very little HClO will be present at equilibrium.(g) Very little HClO will be present at equilibrium.(f) Very little HClO will be present at equilibrium.(g) Very little HClO will be present at equilibrium.(f) Very little HClO will be present at equilibrium.(g) + H2O(I) \Leftrightarrow 2 NO(g) + Cl2(g)(f) K = $\frac{[NO]^2 [CP_2]}{[H_3O^2][F^2]/[CHF]}$ (f) Consider the following system at equilibrium at 698K: H2(g) + I2(g) \Leftrightarrow 2HI(g)(f) When some I2(g) is added to the equilibrium system at constant temperature: The concentration of H2 will:			

Question 16 6 Points	 Dinitrogen tetraoxide and nitrogen dioxide are two gases that exist in equilibrium at a range of temperatures. NO₂ is a reddish brown gas while N₂O₄ is colorless. If we represent the equilibrium as: N₂O₄(g) ⇔ 2NO₂(g) Consider the following experimental observations: At High Temperature the red color is very strong. At Low Temperature the gas has very little color. We can conclude from these observations: 				
	a) That the reaction is:				
	🗆 Exothermic 🛛 🔲 Endothe	rmic 🛛 Neutral			
	b) When the temperature is decreased the equilibrium constant , K				
	🗆 Increases 🛛 🔲 Decreas	es 🛛 Remains the same.			
	c) When the temperature is decreased the equilibrium concentration of NO_2				
	🗆 Increases 🛛 🔲 Decreas	es 🛛 Remains the same.			
Question 17 4 Points	Consider the following system at equilibrium at 350 K: 2 CH₂Cl₂(g) ⇔ CH₄(g) + CCl₄(g) If the volume of the equilibrium system is suddenly increased at constant temperature::				
	The reaction must:	The number of moles of CCI 4 will:			
	a) Run in the forward direction.	a) Increase			
	b) Run in the reverse direction.	b Remain the same			
	(c) Remain the same .	c) Decrease			

Exam II Score
