Cham	1	1	\wedge
Chem	1	1	U

Fall 2014

Exam III

Whelan

SID				

Last Key

First

Answer

Question 1 7 Points

a) Write a **net ionic equation** to show that **hydrocyanic** acid, behaves as an acid in water.

 $HCN(aq) + H_2O(I)$

(= or ⇔)

H₃0⁺ + CN⁻

b) Write a net ionic equation to show how barium hydroxide behaves as a base in water.

 $B_0(OH)_2$

____ (= or ⇔) Balt .

2 OH -

Question 2 8 Points

Assign each species on the left to a category on the right.

a) HF

b) Ba(OH)₂

- 2
- 3.
- c) (CH₃)₂NH 4
- d) HNO₃

- 1. Strong Acid
- 2. Weak Acid
- 3. Strong Base
- 4. Weak Base

Question 3 6 Points

An aqueous solution has a **hydroxide ion** concentration of $1.0 \times 10^{-2} M$.

a) What is the hydronium ion concentration in this solution?

Posis

b) Is this solution acidic, basic or neutral?

Basic

Question 4 6 Points

An aqueous solution has a pH of 8.30

a) What is the **pOH** of this solution?

5.70

b) What is the hydronium ion concentration in this solution?

5.01 ×10-4

c) What is the **hydroxide ion** concentration in this solution?

2.00 × 10-6

Question 5 6 Points

Arrange the following solutions in order of increasing acidity:

1 = least acidic ; 3 = most acidic

a) Solution with a **pOH** = **8**

2

b) Solution with a hydroxide ion concentration = 1×10^{-10} M

3

c) Solution with a hydronium ion concentration = 1×10^{-13} M

1

Question 6 3 Points

Hydrocyanic acid (HCN) has a Ka = 4.0×10^{-10} @ 25°C. Which of the following amino acids has an acid strength closest to that of HCN?

- □ Arginine
- pKa = 12.0

□ Cysteine pKa = 8.3

- Lysine
 - ysine pKa = 9.0

- ☐ Histidine
- pKa = 6.1

Question 7 9 Points	In the following net ionic equation: $CH_3NH_2(aq) + H_2O(1) \stackrel{\longleftarrow}{\longleftarrow} CH_3NH_3^+ + OH^-$
	a) CH3NH2 is a Bronsted-Lowry Base
	b) H ₂ O is a Bronsted-Lowry Qcià
	c) The formula of the product that acts as a proton acceptor :
Question 8	a) The formula for the conjugate acid of HSO ₃ - is: H2503
6 Points	b) The formula for the conjugate base of HSO ₃ is:
Question 9 4 Points	Which of the following aqueous solutions are buffer solutions?
	□ 0.21M HI + 0.17M KI
	□ 0.13M NaOH + 0.24M NaCl □ 0.26M NH ₄ NO ₃ + 0.37M KNO ₃
	(1) 0.16M CH3COOH + 0.21M CH3COOK
Question 10 8 Points	A buffer solution is made that is 0.432M in H₂S and 0.432M in NaHS
(2 Points)	a) If Ka for H_2S is 1.0×10 ⁻⁷ , what is the pH of the buffer solution? \red
(4 Points)	b) Write the net ionic equation for the reaction that occurs when 0.088mol HBr is added to 1.00 L of the buffer solution.
	$\frac{\text{H}_{3}\text{O}^{+}}{\text{H}_{3}\text{O}^{+}} + \frac{\text{H}_{5}^{-}}{\text{H}_{5}^{-}} = \frac{\text{H}_{2}\text{O}(?)}{\text{H}_{2}\text{O}} + \frac{\text{H}_{2}\text{S}}{\text{H}_{3}\text{O}}$
(2 Points)	c) The Buffer capacity for removal of added OH is:
Question 11 5 Points	A buffer solution is 0.398M in HCN and 0.324M in NaCN. If Ka for HCN is 4.0×10 ⁻¹⁰ , what
	is the pH of this buffer solution? For full credit you must show work
	PH = PKa + logio [HCN]
	$= -\log_{10}(4.0 \times 10^{-10}) + \log_{10} \frac{0.324}{0.398}$
	= 9.40 + log10 (0.814)
	= 9.40 - 0.09 = 9.31
	pH = <u>9.31</u>

Question 12 6 Points	The pKa value for HNO2 is 3.35.
(3 Points)	a) Would a buffer prepared from HNO₂ and KNO₂ with a pH of 3.00 be considered to
	be an effective buffer? (Yes or No) YES
(3 Points)	b) A buffer in which the mole ratio of KNO₂ to HNO₂ is 0.46.
	Would this buffer solution have a greater capacity for added acid (H₃O⁺) or added
	base (OH-)?
Question 13 4 Points	A small amount of strong base is added to a buffer made from HCN and NaCN . What changes if any will occur to the following.
	Choose from the following choices: Increase significantly Decrease significantly Decrease Decrease slightly
	a) poh DecRease slightly
	b) [HCN] Decrease
Question 14 6 Points	Whether or not the process is observed in nature, which of the following could account for the following transformations: (Choose all that apply)
	a) ²³⁴ U → ²³⁰ Th □ beta decay
	□ electron capture □ positron emission
	b) ²¹⁰ Pb — ²¹⁰ Bi
	□ electron capture □ positron emission
	c) ⁵¹ Cr → ⁵¹ V □ alpha decay □ beta decay
	i electron capture positron emission
Question 15 4 Points	You need to make an aqueous solution of 0.145M iron(III) sulfate for an experiment in lab, using a 500mL volumetric flask. How many grams of iron(III) sulfate should you add?: For full credit you must show work.
	$Fe_2(504)_3: 2(55.85) + 3(32.07 + 64.00) = 399.919.md^{-1}$
	$\# moR Fe_{A}(504)_{3} = 0.145 \times 0.5 = 0.0725$
	$0.0725 \text{ mol } Fe_2(504)_3 399.919 = 29.09$
	<u>29.0</u> g

Question 16 6 Points

An aqueous solution of **barium hydroxide** is standardized by titration with a **0.199M** solution of **hydrochloric acid**.

If 21.0mL of base are required to neutralize 18.9mL of the acid, what is the molarity of the barium hydroxide solution?

For full credit you must show work and give a balanced chemical equation.

0.0896

M

Question 17 6 Points

According to the following reaction, how many grams of water will be formed upon the complete reaction of 29.0 grams of oxygen gas with excess hydrochloric acid?

hydrochloric acid (aq) + oxygen (g) water (l) + chlorine (g)

For full credit you must show work and give a balanced chemical equation.

4 HO + Oa(g) = 2 H2O(1) + 2 C2(g)

$$O_{\lambda}$$
: $\lambda(16.00) = 32.00 \text{ g.mol}^{-1}$ $H_{\lambda}0$: $\lambda(1.01) + 16.00 = 18.02 \text{ g.mol}^{-1}$ $\lambda(1.01) + 16.00 = 18.02$

32.7

Do Not Write Below This

Exam III Score