
Chem 110	Fall 2015	E×am II	Whelan	
SID	Last Key	First Answer		
Question 1 3 Points	b) The numb	the following Lewis diagram for SO er of single bond er of double bond er of equivalent Lewis structures	2 1 2	
Question 2 8 Points	Draw a Lewis structure for each of octet rule. CN ⁻ C: 4 N: 5 -: 1 10	the following where the central atc F_2CO F: 2(7) C: 4 O: 6 24	om obeys the \vec{F}	
	$\begin{array}{c} ClO_{3}^{-} & I\overline{O}I \\ 0: & 7 \\ 0: & 3(6) \\ -: & -\frac{1}{26} \end{array}$	- NH_3 H N: 5 H: $3(i)$ H - N 8	<u>1</u> – H	
Question 3 6 Points	 On the rough work paper provided - draw a Lewis structure for CO₂ in which the central C atom obeys the octet rule, and answer the questions on the right based on your drawing. a) The number of unshared pairs (lone pairs) on the central C atom is: b) The central C atom forms single bonds. c) The central C atom forms double bonds. 			
Question 4 8 Points	Draw a Lewis structure for each of $CH_3OCH_2CH_3$ H H $HH -C -\overline{O} -C -HH$ H H	the following organic molecules. HCOOH IOI H-C-O-	Н	
	$CH_{3}CONH_{2}$ $H = \frac{101}{1}$ $H = \frac{1}{C} - \frac{1}{C} - \frac{1}{N} - H$ $H = H$	C ₃ H ₆ H-c-c=	H C-H	

	AX2E1	AX2E,	AX2E2		
Question 10 8 Points	ö=s=ö	:ö—ö—ö	н—ё—н		
	A	В	С		
	The following questions relate to the Lewis Structures depicted above				
	a) The molecule with the s	mallest bond angle:	C		
	b) The molecular geometry	y of B :	angular Bent (120°)		
	c) The Electron Pair Geon		Tetrahedron		
	d) The molecule(s) that is(are) expected to be pol	ar: <u>A,B¢C</u>		
Question 11	The electron-pair geometry around the N atom in NOCI? IRigonal planar - There				
6 Points	is/are lone pair(s) around the central atom, so the molecular geometry of the				
1 <u>a</u> -N=0	NOCI molecule is predicted to be <u>Angular Bent (120°)</u>				
Question 12 4 Points	Write the equilibrium constan t	expression , K, for the	following reactions: [No] ² [Bra]		
	a) 2 NOBr(g) ⇔ 2 NO(g) +	Br ₂ (g) K =	ENOBrJ ²		
	b) HCN(aq) + H₂O(I) ⇔ H₃	O⁺(aq) + CN⁻(aq) K =	<u>[H30⁺][cN⁻]</u>		
Question 13	Consider the following system	-			
6 Points	2 HI(g) \Leftrightarrow H ₂ (g) + I ₂ (g) When some I ₂ (g) is removed from the equilibrium system at constant temperature:				
	The reaction must:	•	oncentration of H_2 will:		
	(a) Run in the forward dire	ction. a)	Increase		
	b) Run in the reverse direc	tion. b)	Remain the same		
	c) Remain the same .	c)	Decrease		
Question 14 6 Points	Consider the following system at equilibrium at 298 K: $H_3O^{+}(aq) + NO_2^{-}(aq) \Leftrightarrow HNO_2(aq) + H_2O(I)$				
	When some \mathbf{OH}^{-} is added to the equilibrium system at constant temperature:				
	The reaction must:		oncentration of HNO2 will:		
	a) Run in the forward dire		Increase		
	(b) Run in the reverse direc	tion. b)	Remain the same		
	c) Remain the same .		Decrease		

Question 15 6 Points	Consider the following system at equilibrium at 573 K: 2 NO(g) + Cl₂(g) ⇔ 2 NOCl(g) + 18.4 kcal If the temperature of the equilibrium system is suddenly decreased :					
	The reaction must:	The concentration of Cl 2 will:				
	(a) Run in the forward direction.b) Run in the reverse direction.	a) Increase b) Remain the same				
	c) Remain the same .	c) Decrease				
Question 16 6 Points	Consider the following system at equilibrium at 675K: $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$ If the volume of the equilibrium system is suddenly increased:					
	The reaction must:	The concentration of NH 3 will:				
•	d) Run in the forward direction.	d) Increase				
	(e) Run in the reverse direction.	e) Remain the same				
	f) Remain the same .	(f) Decrease				
Question 17 3 Points	In our discussion on the consequences of molecular polarity , the depiction below was used to discuss:					
	a) Fabric softeners					
	b) Membranes					
	c) Detergen	c) Detergents				
	(d) Like disso	olves like				
	Oil in Water e) Lead pois	bisoning				

Exam II Score	