Question 1 7 Points

Question 2 8 Points

Question 6 3 Points
a) Write a net ionic equation to show that hydrocyanic acid, behaves as an acid in water.
$\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

b) Write a net ionic equation to show how barium hydroxide behaves as a base in water.
$\mathrm{Ba}_{\mathrm{Cl}}(\mathrm{OH})_{2}(\mathrm{aq})$

$$
\frac{=}{(=\text { or } \Leftrightarrow)}
$$

Assign each species on the left to a category on the right.
a) HF
b) $\mathrm{Ba}(\mathrm{OH})_{2}$
c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
d) HNO_{3}

1. Strong Acid
2. Weak Acid
3. Strong Base
4. Weak Base

An aqueous solution has a hydroxide ion concentration of $1.0 \times 10^{-2} \mathrm{M}$.
a) What is the hydronium ion concentration in this solution?
b) Is this solution acidic, basic or neutral?

An aqueous solution has a pH of 8.30
a) What is the pOH of this solution?
5.70
b) What is the hydronium ion concentration in this solution?
c) What is the hydroxide ion concentration in this solution?

Arrange the following solutions in order of increasing acidity: 1 = least acidic ; 3 = most acidic
a) Solution with a $\mathrm{pOH}=8$
b) Solution with a hydroxide ion concentration $=1 \times 10^{-10} \mathrm{M}$
c) Solution with a hydronium ion concentration $=1 \times 10^{-13} \mathrm{M}$

Hydrocyanic acid (HCN) has a $\mathrm{Ka}=4.0 \times 10^{-10} @ 25^{\circ} \mathrm{C}$. Which of the following amino acids has an acid strength closest to that of HCN?

arginine	$\mathrm{pKa}=12.0$	Cysteine	$\mathrm{pKa}=8.3$
Lysine	$\mathrm{pKa}=9.0$	Histidine	$\mathrm{pKa}=6.1$

Question 7 In the following net ionic equation:
9 Points
$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$
a) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
b) $\mathrm{H}_{2} \mathrm{O}$ is a Bronsted-Lowry \qquad Base
c) The formula of the product that acts as a proton acceptor: Acid is a Bronsted-Lowry \qquad
a) The formula for the conjugate acid of $\mathrm{HSO}_{3}{ }^{-}$is:
b) The formula for the conjugate base of $\mathrm{HSO}_{3}{ }^{-}$is:
$\frac{\mathrm{H}_{2} \mathrm{SO}_{3}}{\mathrm{SO}^{2-}}$ $\frac{\mathrm{H}_{2} \mathrm{SO}_{3}}{\mathrm{SO}_{3}^{2-}}$

Question 9 Which of the following aqueous solutions are buffer solutions?
6 Points0.21M HI + 0.17M KI$0.31 \mathrm{M} \mathrm{HClO}+0.28 \mathrm{M} \mathrm{KClO}$$0.13 \mathrm{M} \mathrm{NaOH}+0.24 \mathrm{M} \mathrm{NaCl}$$0.26 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.37 \mathrm{M} \mathrm{KNO}_{3}$
$0.16 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.21 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK}$

Question 10
8 Points
(2 Points)
(4 Points)
(2 Points)
Question 11 5 Points

A buffer solution is made that is 0.432 M in $\mathrm{H}_{2} \mathrm{~S}$ and 0.432 M in NaHS
a) If Ka for $\mathrm{H}_{2} \mathrm{~S}$ is 1.0×10^{-7}, what is the pH of the buffer solution? \qquad
b) Write the net ionic equation for the reaction that occurs when 0.088 mol HBr is added to 1.00 L of the buffer solution.

$$
\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}}+\frac{\mathrm{H}_{2} 0(8)}{\mathrm{HS}^{-}}+\mathrm{H}_{25}(\mathrm{cq})
$$

\qquad
0.432 M
c) The Buffer capacity for removal of added OH^{-}is:

A buffer solution is 0.398 M in HCN and 0.324 M in NaCN . If Ka for HCN is 4.0×10^{-10}, what is the pH of this buffer solution?

$$
\begin{aligned}
P H & =p K_{0}+\log _{10} \frac{[C N-]}{[H C N]} \\
& =-\log _{10}\left(4.0 \times 10^{-10}\right)+\log _{10} \frac{0.324}{0.398} \\
& =9.40+\log _{10} 0.814 \\
& =9.40-0.09
\end{aligned}
$$

Question 16 6 Points	An aqueous solution of barium hydroxide is standardized by titration with a 0.199 M solution of hydrochloric acid. If 21.0 mL of base are required to neutralize 18.9 mL of the acid, what is the molarity of the barium hydroxide solution? For full credit you must show work and give a balanced chemical equation.
	0.0896 m

Do Not Write Below This
Exam III Score:- \square

