Chem	1	1	0
CHEIII	_	4	v

Fall 2018

Exam III

Whelan

SID

Last Key

First

Answer

Question 1 7 Points

a) Write a **net ionic equation** to show that **hydrocyanic** acid, behaves as an acid in water.

 $HCN(aq) + H_2O(I)$

<u>⟨⇒⟩</u> (= or ⇔) H₃0⁺

CN-

b) Write a net ionic equation to show how barium hydroxide behaves as a base in water.

Ba (OH)2 (aq)

(= on (t))

Ba2+

20H-

Question 2 8 Points

Assign each species on the left to a category on the right.

- a) HF
- 2
- b) Ba(OH)₂
- 3
- c) (CH₃)₂NH
- d) HNO₃

- 1. Strong Acid
- 2. Weak Acid
- 3. Strong Base
- 4. Weak Base

Question 3 6 Points

An aqueous solution has a **hydroxide ion** concentration of $1.0 \times 10^{-2} M$.

a) What is the hydronium ion concentration in this solution?

1.0×10-14 M

b) Is this solution acidic, basic or neutral?

Basic

Question 4 6 Points

An aqueous solution has a pH of 8.30

a) What is the **pOH** of this solution?

5.70

b) What is the hydronium ion concentration in this solution?

5.01×10-7 M

c) What is the hydroxide ion concentration in this solution?

2.00×10-6

Question 5 6 Points

Arrange the following solutions in order of increasing acidity:

1 = least acidic ; 3 = most acidic

2

a) Solution with a **pOH** = **8**

3

b) Solution with a hydroxide ion concentration = 1×10^{-10} M c) Solution with a hydronium ion concentration = 1×10^{-13} M

١

Question 6 3 Points

Hydrocyanic acid (HCN) has a Ka = 4.0×10^{-10} @ 25°C. Which of the following amino acids has an acid strength closest to that of HCN?

- Arginine
- pKa = 12.0

Cysteine

pKa = 8.3

- Lysine
 - /sine pKa = 9.0

- ☐ Histidine
- pKa = 6.1

Question 7 9 Points	In the following net ionic equation: $CH_3NH_2(\alpha q) + H_2O(1) \stackrel{\longleftarrow}{\longleftarrow} CH_3NH_3^+ + OH^-$
	a) CH_3NH_2 is a Bronsted-Lowry Base
	b) H ₂ O is a Bronsted-Lowry <u>Qcid</u>
	c) The formula of the product that acts as a proton acceptor :
Question 8 6 Points	a) The formula for the conjugate acid of HSO ₃ is: H2503
	b) The formula for the conjugate base of HSO ₃ is:
Question 9 6 Points	Which of the following aqueous solutions are buffer solutions?
	□ 0.21M HI + 0.17M KI
	□ 0.13M NaOH + 0.24M NaCl □ 0.26M NH₄NO₃ + 0.37M KNO₃
	© 0.16M CH₃COOH + 0.21M CH₃COOK
Question 10 8 Points	A buffer solution is made that is $0.432M$ in H_2S and $0.432M$ in NaHS
(2 Points)	a) If Ka for H_2S is 1.0×10^{-7} , what is the pH of the buffer solution?
(4 Points)	b) Write the net ionic equation for the reaction that occurs when 0.088mol HBr is added to 1.00 L of the buffer solution. H30+ + H5- = H20(8) + H25 (aq.)
(2 Points)	c) The Buffer capacity for removal of added OH is: 0.432 M
Question 11 5 Points	A buffer solution is $0.398M$ in HCN and $0.324M$ in NaCN. If Ka for HCN is 4.0×10^{-10} , what is the pH of this buffer solution?
	For full credit you must show work
	$PH = PKa + log_{10} \frac{[CN^{-}]}{[HCN]}$
	$= -\log_{10}(4.0\times10^{-10}) + \log_{10}\frac{0.324}{0.398}$
	= 9.40 + log10 0.814
	= 9.40 - 0.09
	= 9.31
	0 01
	pH = <u>9.31</u>

Question 12 6 Points	The pKa value for HNO2 is 3.35 .
(3 Points)	a) Would a buffer prepared from HNO₂ and KNO₂ with a pH of 3.00 be considered to
	be an effective buffer? (Yes or No)
(3 Points)	b) A buffer in which the mole ratio of KNO₂ to HNO₂ is 0.46.
	Would this buffer solution have a greater capacity for added acid (H₃O⁺) or added
	base (OH-)? OH-
Question 13	A small amount of strong base is added to a buffer made from HCN and NaCN. What
6 Points	changes if any will occur to the following.
	Choose from the following choices:
	Increase significantly Increase Increase slightly
	Decrease significantly Decrease Decrease slightly
	a) poh <u>Decrease slightly</u>
	b) [HCN] Decrease
0 1: 14	
Question 14 6 Points	Balance the following nuclear reactions.
	a) $^{241}_{94}$ Pu + $^{16}_{8}$ O = $102 \text{ No} + 5^{1}_{0}$ n
	b) ⁵⁵ ₂₆ Fe = <u>• 6</u> + ⁵⁵ ₂₅ Mn
Question 15	You need to make an aqueous solution of 0.145M iron(III) sulfate for an experiment in lab,
6 Points	using a 500mL volumetric flask. How many grams of iron(III) sulfate should you add? For full credit you must show work.
	Fe2 (504)3: 2(55.85) + 3(32.07 + 64.00) = 399.91 g.mol-1
	$\# moP Fe_2(50_4)_3 = 0.145 \times 0.5 = 0.0725$
	0 0775 mg 52 (60%) 299 91 2
	0.0725 mol Fe2(504)3 399.919 = 29.09
	<u>29.0</u> g

Question 16 6 Points

An aqueous solution of **barium hydroxide** is standardized by titration with a **0.199M** solution of **hydrochloric acid**.

If 21.0mL of base are required to neutralize 18.9mL of the acid, what is the molarity of the barium hydroxide solution?

For full credit you must show work and give a balanced chemical equation.

$$Ba(OH)_2 + 2HCO = 2H_2O(S) + BqCP_2(ag)$$

21.0 m/s 18.9 m/s
 $M = ?$ 0.199 M

$$\frac{3.76 \times 10^{-3} \text{ mol HCl}}{2 \text{ HCl}} = 1.88 \times 10^{-3}$$

$$M = \frac{\# \text{ mol } Ba(OH)_2}{V(L)} = \frac{1.88 \times 10^{-3}}{0.021} = 0.0896$$

0.0896 M

Do Not Write Below This

Exam III Score:-
