Question 1 8 Points

Question 2 6 Points

Question 3 3 Points
a) How many significant figures are there in each of the following numbers? $0.927790-6.060464-5 \quad 1.00 \times 10^{3} \quad 3$
b) There are 12 eggs in a dozen. A farm produces 747 dozen eggs a month, how should the number of eggs per month be reported?
8.96×10^{3}
c) The number 447.496 rounded to 4 significant figures is:
a) When $\mathbf{1 7 . 2}$ is subtracted from $\mathbf{4 5 . 5 8}$, the result should be reported with digit(s) _ _ after the decimal point.
b) When 85.49 is divided by 59.6 , the answer should be reported to significant __3_ digit(s).
A piece of copper contains 6.7×10^{8} atoms. What is the volume of the sample in units of liters.

$1 \mathrm{~cm}^{3} \mathrm{Cu}=8.8 \mathrm{~g} \mathrm{Cu}$	9.5×10^{21} atoms $\mathrm{Cu}=1 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{Kg}=1000 \mathrm{~g}$
$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$	$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	

No need to do the calculation - just set up the correct dimensional analysis conversions you may not need to fill in all the boxes.

$$
6.7 \times 10^{8} \text { atoms } \times \frac{1 \mathrm{~g} C_{u}}{9.5 \times 10^{21} \text { atoms }} \times \frac{1 \mathrm{~cm}^{3} C_{u}}{8.8 \mathrm{~g} \mathrm{Cu}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~cm}^{3}}
$$

Question 4 3 Points

Question 5 3 Points

Question 6 6 Points

A 0.0635 L sample of a liquid has a mass of 87.6 g . Identify it as either nonane (density $=0.719 \mathrm{~g} / \mathrm{mL}$) or iodoheptane (density $=1.38 \mathrm{~g} / \mathrm{mL}$). Iodohep tane
The element copper has two stable isotopes, copper-63 with an atomic mass of 62.93 amu and copper- 65 with an atomic mass of 64.93 amu . From the atomic weight of $\mathrm{Cu}=63.54$ one can conclude that:

> copper- 65 has the highest percent natural abundance
> \square both isotopes have the same percent natural abundance
> \square most copper atoms have an atomic mass of 63.54
> (a) copper- 63 has the highest percent natural abundance

A certain element consists of two stable isotopes.
The first has an atomic mass of 107 amu and a percent natural abundance of 51.8%.
The second has an atomic mass of 109 amu and a percent natural abundance of $\mathbf{4 8 . 2 \%}$.
What is the atomic mass of the element?
$0.518(107)+0.482(109)=107.964^{*}$

* Jhese ore exact numbers

Question 7 6 Points

Question 8 10 Points

Question 9 3 Points

Question 10 8 Points

Question 11 8 Points

Question 12 2 Points

Decide if the following statements are true (T) or false (F) :
a) Protons and neutrons are equal in mass, but opposite in charge.
b) The mass of a proton is about the same as the mass of an electron.
c) The electron acts as a buffer zone in the nucleus

The following questions pertain to the periodic table given at the front of this exam:
a. The atomic number for the element that is in group 4A and period 2? 6
b. The atomic weight for the element in group 3A and period 4? 69.72.
c. Check the elements that would be expected to have similar properties?

- Pb
(1) Cl
- Be
(I) I
- Rn
d. What is the symbol of the alkali metal that is in period 5 ?

Bl s
e. A student when asked to give the formula for the 7 elements that exist as diatomics, gave the following answer. Circle the incorrect answer and in the space provided give the formula for the diatomic that the students missed
$\square H_{2} \quad \square N_{2} \quad \square B_{2} \quad \square I_{2} \quad\left(\square t_{2} \quad \square O_{2} \quad \square C l_{2}\right.$:
F_{2}

Order the following (from 1-3) in order of the greatest force of attraction:
(1 being the greatest and 3 the smallest)
a) K^{+}and Cl^{-}separated by a distance of 347 pm
b) Ca^{2+} and S^{2-} separated by a distance of 347 pm
c) K^{+}and I^{-}separated by a distance of 412 pm

Give the correct formula for the following polyatomic ions:
a) Phosphide
b) Phosphate
c) Dihydrogen phosphate

d) Ammonium

a. Name the compound with the formula MgS?

Magnesium sulfide
b. Name the compound with the formula $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$?

Iron (II) Nitrite
c. What is the formula for sodium hydrogen carbonate? $\mathrm{Na}_{\mathrm{H}} \mathrm{HO}_{3}$
d. What is the formula for copper(II) sulfite?
CuSO_{3}
How many moles of sulfur are present in 4.37 moles of $\mathbf{S}_{2} \mathrm{~F}_{10}$?
Show Work

$4.37 \mathrm{mod} 5_{2} F_{10}$	25
	$15_{2} F_{10}$

Question 13
How many grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are in 1.03 mol of this compound?

$105 \quad \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
Balance the following chemical equations using the smallest possible integer coefficients.
a) $\ldots \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq})$
b) The complete oxidation reaction that occurs when cyclopropane $\left(C_{3} H_{6}\right)$ burns in air.

$$
2 \mathrm{C}_{3} \mathrm{H}_{6}+9 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \underline{\mathrm{CO}_{2}}+6 \xrightarrow{\mathrm{H}_{2} \mathrm{O}}
$$

c) When nitrogen reacts with hydrogen, ammonia $\left(\mathrm{NH}_{3}\right)$ is formed

$$
-\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

a) How many orbitals are there in the shell with $\mathbf{n}=\mathbf{3}$ in an atom?

b) How many types of orbitals are there in the shell with $\mathrm{n}=3$ in an atom? 3
c) What is the maximum number of electrons possible in a set of 5 d orbitals? \qquad
d) How many 5 f orbitals are there in an atom? \qquad
Label the following orbital drawings as s, p, d or f.

a) Write the complete electronic configuration for phosphorus? $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
b) Write the noble gas configuration for vanadium, (V)?
c) The element with an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ \qquad
d) $\mathrm{Se},[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{4}$, has how many valence electrons?
e) The element in period 4 that has the Lewis diagram, ${ }^{-X}$:

Ge

