Question 1 The following questions relate to the molecule depicted:

Question 2 6 Points


1. The total number of sigma bonds in this molecule is: 9
2. The total number of pi bonds in this molecule is: 3
3. The hybridization used to describe the bonding around:
C1 is: $s p^{3}$
$C 2$ is: $s p^{2}$
C4 is: sp
4. The sigma bond formed between $C 3$ and $C 4$ is best describe as the overlap of $a(n)$
$s p^{2}$ orbital on C3 with $a(n) s p$ orbital on C4.
5. The pi bonds in this molecule are best described as being formed from the overlap of p orbitals.
6. What is the driving force in the following reaction?

Gas/Water formation

$$
2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{CoCO}_{3}(\mathrm{~s})=\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

2. Give the net ionic equation for this reaction?

$$
2 \mathrm{H}^{+}+\mathrm{CoCO}_{3}(\mathrm{~s})=\mathrm{Co}^{2+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Question 3 6 Points

1. Write the balanced chemical equation for this reaction:

$$
\mathrm{NiCl}_{2}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{aq})=\mathrm{NiS}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})
$$

2. Write the net ionic equation for this reaction:

$$
\mathrm{Ni}^{2+}+\mathrm{S}^{2-}=\mathrm{NiS}(\mathrm{~s})
$$

Question $4 \mathrm{HNO}_{2}$ is a weak acid that reacts with $\mathrm{CoCO}_{3}(\mathrm{~s})$ to form $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and $\mathrm{CO}_{2}(\mathrm{~g})$. 4 Points Write the net ionic equation for this reaction:

$$
2 \mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{CoCO}_{3}(\mathrm{aq})=\mathrm{Co}^{2+}+2 \mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Question 5 What reaction, if any, will occur when a solution of potassium chloride is mixed with an 4 Points aqueous solution of iron(II) nitrate. Circle the correct answer.

1. An acid base reaction
2. A precipitation reaction
3. A gas forming reaction
4. No reaction

Question 6 What quantity of heat (in joules) is required to raise the temperature of 52.8 mL of water 6 Points from $24.9^{\circ} \mathrm{C}$ to $28.1^{\circ} \mathrm{C}$. The density of water at this temperature is $0.997 \mathrm{~g} / \mathrm{mL}$. The specific heat capacity of water is $4.184 \mathrm{~J} / 9^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \begin{array}{l|l}
52.8 \mathrm{~mL} & 0.997 \mathrm{~g} \\
\hline & 1 \mathrm{~mL}
\end{array}=52.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \\
& \Delta T=28.1-24.9=3.2^{\circ} \mathrm{C} \\
& q=m \times C \times \Delta T=52.6 \mathrm{~g} \times 4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times 3.2^{\circ} \mathrm{C}=705 \mathrm{~J}
\end{aligned}
$$

Answer: 705 J
Question 7 What quantity of heat (in joules) must be absorbed by $\mathrm{CH}_{3} \mathrm{Cl}$ to convert 91.6 g of liquid to a 6 Points vapor at its boiling point, $-24.09^{\circ} \mathrm{C}$ ? The heat of vaporization of $\mathrm{CH}_{3} \mathrm{Cl}$ is $21.40 \mathrm{~kJ} / \mathrm{mol}$.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{Cl}: 12.01+3(1.01)+35.45=50.49 \mathrm{~g} / \mathrm{mol} \\
& \begin{array}{l|l}
91.6 \mathrm{~g} \mathrm{CH}_{3} \mathrm{Cl} & 1 \mathrm{~mol} \\
\hline & 50.49 \mathrm{~g}
\end{array}=1.81 \mathrm{~mol} \mathrm{CH} \mathrm{C}_{3} \mathrm{Cl} \\
& q=1.81 \mathrm{~mol} \times 21.40 \mathrm{~kJ} / \mathrm{mol}=38.82 \mathrm{~kJ}=38,820 \mathrm{~J}
\end{aligned}
$$

Answer: 38,820J
Question 8 If 0.61 g of $C$ is burned in excess $\mathrm{O}_{2}(\mathrm{~g})$ in a calorimeter which contains 775 g of water, the 9 Points calorimeter temperature increases from $25.0^{\circ} \mathrm{C}$ to $28.0^{\circ} \mathrm{C}$. The heat capacity of water is $4.184 \mathrm{~J} / 9^{\circ} \mathrm{C}$, the calorimeter constant is $893 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. What quantity of heat is evolved per mole of carbon?

$$
\begin{aligned}
& q_{\text {water }}=775 \mathrm{~g} \times 4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \times 3^{\circ} \mathrm{C}=9728 \mathrm{~J} \\
& q_{\text {calorimeter }}=893 \mathrm{~J} /{ }^{\circ} \mathrm{C} \times 3^{\circ} \mathrm{C}=2679 \mathrm{~J} \\
& q_{\text {total }}=9728 \mathrm{~J}+2670 \mathrm{~J}=12,407 \mathrm{~J} \\
& \begin{array}{l|l}
0.61 \mathrm{~g} C & 1 \mathrm{~mol} \\
\hline & 12.01 \mathrm{~g}
\end{array}=0.05 \mathrm{~mol} C \\
& q_{\text {evolved }}=(12398 \mathrm{~J} / 0.05 \mathrm{~mol})=248,136 \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

Answer: 248,136J

Question 9 The first step in the production of nitric acid is given below:

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g})=4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What quantity of heat is evolved or absorbed in the production of 1 mole of NO?

$$
\begin{gathered}
\Delta H^{0} f_{f}^{\prime} \text { s in } \mathrm{kJ} / \mathrm{mol}: \quad \mathrm{NO}(\mathrm{~g})=90.29 \quad \mathrm{NH}_{3}(\mathrm{~g})=-45.90 \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=-241.83 \\
\Delta H_{r \times n}^{0}=4 \Delta H^{0} \mathrm{NO}(\mathrm{~g})+6 \Delta \mathrm{H}^{0}{ }_{f} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})-4 \Delta \mathrm{H}^{0}{ }_{f} \mathrm{NH}_{3}(\mathrm{~g}) \\
\Delta H_{r \times n}^{0}=4(90.29)+6(-241.83)-4(-45.90)=-906.22 \mathrm{~kJ} \text { per } 4 \text { moles of } \mathrm{NO} \\
\Delta H_{r \times n}^{0}=-226.6 \mathrm{~kJ} \text { per mole of } \mathrm{NO}
\end{gathered}
$$

Answer: -226.6kJ

Question 10
10 Points

1. Two vessels, $\boldsymbol{A}$ and $B$, contained equal molar quantities of the same gas; both vessels are at the same temperature. However the pressure of vessel $B$ is twice that of vessel $A$. If vessel $A$ has a volume of $4 L$ what is the volume of vessel $B$ ?

Volume of vessel B: 2L
2. Briefly, without any calculations, justify your answer.

With $T$ and $n$ constant the only thing that could effect a change in pressure in the two vessels is the frequency of the collisions. With $T$ constant this can only be caused by a different volume. In order for the pressure in $B$ to be twice that of $A$ the volume of $B$ must be $\frac{1}{2}$ that of $A$.
3. What assumption (if any) did you have to make in determining the volume of $B$
a) Average $K E$ is proportional to $T$
b) Total elastic collisions between the gas molecules (no IMF's)
c) Volume of gas molecules negliable in comparison to volume of the container.

Question 11 How many grams of solid calcium hydroxide are needed to exactly neutralize 24.9 mL of a 0.351 M monoprotic acid solution? Assume that the volume remains constant. Show All Work.

| \#mol of Acid $=0.351 \times 0.0249=8.74 \times 10^{-3} \mathrm{~mol}$ Acid |  |  |  |
| :---: | :---: | :---: | :---: |
| $8.74 \times 10^{-3} \mathrm{~mol}$ Acid | 1 Ca | $-1)_{2}$ | $4.37 \times 10^{-3} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ |
| $4.37 \times 10^{-3} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ |  | 74.10 g | $0.324 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ |
|  |  | 1 mol |  |

Answer: 0.324 g
Question 12 In the laboratory you dissolve 16.9 g of iron(III) sulfate in a volumetric flask and add water 8 Points to a total volume of 100 mL .

1. What is the molarity of the solution?
$0.423 M$
2. What is the concentration of the iron(III) cation?
0.846 M
3. What is the concentration of the sulfate anion?
1.269M

Question 13 For the following reaction, 23.0 grams of hydrochloric acid are allowed to react with 64.4 10 Points grams of barium hydroxide to produce barium chloride and water.

1. Balanced chemical equation: $2 \mathrm{HCl}+\mathrm{Ba}(\mathrm{OH})_{2}=\mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2. What is the formula of the limiting reagent?

HCl
3. The maximum amount (in grams) of barium chloride formed?
65.79

Do Not Write Below This Line

| Exam III Score $\square$ |  |
| :--- | :--- |
|  |  |

