Question 1
10 Points

Using noble gas notation, write the electron configuration for the following:

- 1. Ni [Ar]4s²3d⁸
- 2. Cr [Ar]4s¹3d⁵
- 3. Fe²⁺ [Ar]3d⁶

The rare earth elements, or lanthanides exist as +3 ions. Using the noble gas notation, show the electron configuration of:

- 1. Eu [Xe]6s²4f⁷
- 2. Eu³⁺ [Xe]4f⁶
- Question 2 Arrange the following elements in order of increasing size, by ranking then from 1 (smallest) to 5 (largest)

AI 3	K 5
В 2	Na 4
c 1	

Whelan

Question 3 Arrange the following elements in order of increasing ionization energy, by ranking them from 1 (least) to 4 (greatest)

s 1	o 2
F 3	He 4

- Question 4 Consider the elements Na, O, F and CI: 4 Points
 - 1. Which element has the greatest electronegativity?
 - 2. Which element has the greatest metallic character? Na
- Question 5

Draw the $\underline{\text{best}}$ Lewis Dot structure for the following

co	F ₂ CO
:c≡o:	:F:
BCI ₃	IBr ₂ -
:çi: :çi—B—çi:	:Br—,I,—Br:

Question 6
6 Points

What is the **formal charge** on the oxygen atoms on the Lewis Dot

Structure depicted on the left.

1 2 3

O1: -

O2: +1

O3: 0

Question 7 Draw all $\underline{\text{reasonable}}$ resonance structure for FNO_2 .

Circle the correct answer:

Average bond length table is on the front page of this exam.

The **F** to **N** bond length is expected to be:

The N to O bond length is expected to be:

Molecular Geometry

2. < 134 pm

3. = 134 pm

2. > 136 pm

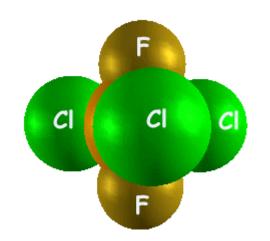
3. = 115 pm

4. > 115 pm

Question 8 Phosgene, Cl₂CO is a highly toxic gas. Using the bond energies given on the front page of this exam, estimate the enthalpy change for the reaction of carbon monoxide and chlorine to produce phosgene.

$$CO(g) + Cl_2(g) = Cl_2CO(g)$$

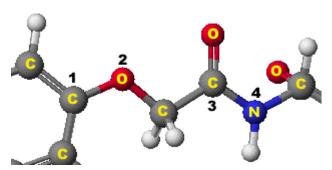
Bonds Broken: $C \equiv O + Cl - Cl = 1075 + 243 = 1318 \text{ kJ.mol}^{-1}$ Bonds Formed: $C = O + 2(C - Cl) = 745 + 2(330) = 1405 \text{ kJ.mol}^{-1}$ $\Delta H = \text{Sum Bonds Broken} - \text{Sum Bonds Formed} = 1318 - 1405 = -87 \text{ kJ.mol}^{-1}$


Question 9 Give the electron pair geometry and the molecular geometry for the following.

10 Points

	Liech on Fair Decimenty	Molecular Deometry
1. CH ₂ Cl ₂	Tetrahedron	Tetrahedron
2. NO ₂ -	Trigonal planar	Angular or Bent
3. NO ₂ ⁺	Linear	Linear
4. SF ₄	Trigonal bipyramid	See-saw
5. BrF ₅	Octahedron	Square pryamid

Flectron Pair Geometry


Question 10
6 Points

The geometry of PF_2Cl_3 is depicted on the left. Note that the Chlorine atoms occupy the trigonal planar portion of this geometry.

- Why do you think this is?
 Size, chlorine is bigger than fluorine, occupies site the best accommodates this size difference, that being the trigonal planar sites
- What molecular property of this molecule would further verify the structure depicted? No net dipole moment ... Non polar molecule.

Question 11
8 Points

What is the bond angle about the **numbered** atoms

- 1. 120
- 2, 109
- 3. 120
- 4. 109

Question 12 Classify each of the following molecules as either polar or non-polar.

8 Points

1. CH₂Cl₂ Polar

3. I₃ Non polar

2. NH₃

Polar

4. N₂ Non polar

Question 13 Which of the following would you anticipate as being the **least soluble** in water. 5 Points [Circle your choice]

1. Sodium nitrate

3. Hydrochloric acid

2. Carbon disulfide

4. Ammonia

Briefly justify your choice.

Carbon disulfide is a non polar molecule and thus would be the least soluble in water, as H_2O is polar. All the other molecules are polar and should readily dissolve in water.

Exam I Extra Credit Question You must get all five absolutely correct to obtain the bonus 5 points				
Fill in the name or the formula for the following	na ionic salts			
Sodium hydrogen carbonate	NaHCO ₃			
2. Iron(III) chlorite	Fe(ClO ₂) ₃			
3. Potassium dichromate	K ₂ Cr ₂ O ₇			
4. Aluminum nitrite	Al(NO ₂) ₃			
5. Sodium nitride	Na ₃ N			
Do Not	· Write Below This Line			
Exam II Score				