Question 1 A spherical metal ball has a mass of 6.581 g and a diameter of 9.06 mm . What is the density

$$
\begin{aligned}
& V=(4 / 3) \pi(0.453 \mathrm{~cm})^{3}=0.389 \mathrm{~cm}^{3} \\
& d=m / V=6.581 \mathrm{~g} / 0.389 \mathrm{~cm}^{3}=16.9 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Question 2
7 Points

1. A neutral atom has 60 protons and 83 neutrons. Fill in the three blanks to complete the atomic symbol
Which if any of the following species has the same number of neutrons as it does electrons? Circle the correct answer(s).
${ }^{47}{ }_{24} \mathrm{Cr}^{+}$
${ }^{24} \mathrm{Mg}^{2+}$
${ }^{59} \mathrm{Co}^{2+}$
${ }^{35} \mathrm{Cl}^{-}$
${ }^{125}{ }_{50} S n$
${ }^{90} \mathrm{Sr}$

Question 3 Use the Periodic Table accompanying this exam to answer the following questions:

1. Name the only diatomic gas in Group VA
2. Symbol for the heaviest Alkali Earth Metal.
3. Symbol for transition metal in Group VIB, Period 5. Mo
4. The Lanthanides belong to what Period?
5. Group VIIA are collectively referred to as:

Question 4 Give the sign and magnitude of the charge associated with the following:

1. Phosphate ion-3
2. Phosphide ion -3
3. Ammonium ion +1
4. Group IIIA elements +3

Question 5 Eu has two naturally occurring isotopes:
4 Points

Isotope	Exact Mass	Natural Abundance
${ }^{151} \mathrm{Eu}$	150.920	47.80%
${ }^{153} \mathrm{Eu}$	152.921	52.20%

What is the average atomic mass of Eu? (Give your answer to 3 decimal places)

$$
150.920(0.4780)+152.921(0.5220)=151.965
$$

Question 6 A sample of citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, contains 0.0645 mol of the compound. What is the mass 4 Points of this sample, in grams? [Show All Work]

$$
\begin{aligned}
& \text { Molar Mass }=6(12.01)+8(1.01)+7(16.00)=192.14 \mathrm{~g} / \mathrm{mol} \\
& \begin{array}{l|l}
0.0645 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} & 192.14 \mathrm{~g} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \\
\hline & 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}
\end{array}=12.4 \mathrm{~g}
\end{aligned} .
$$

Question 7 Calculate the mass percent of boron in $\mathrm{B}_{2} \mathrm{O}_{3}$.
4 Points

$$
\begin{aligned}
& \text { Molar Mass }=2(10.81)+3(16.00)=69.62 \mathrm{~g} / \mathrm{mol} \\
& \% \text { Boron }=(21.62 / 69.62) \times 100=31.05 \%
\end{aligned}
$$

Question 8 An organic acid is composed of 58.80% carbon, 9.87% hydrogen, and 31.33% oxygen. Its 6 Points molar mass is $204.26 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of the compound. [Show All Work]

		C	H	0		
		58.80g	9.879	31.3		
		4.896	9.772	1.95		
		4.896	9.772	1.95		
		1.958	1.958	1.95		
		2.50	4.99	1.00		
		5.00	9.98	2.0		
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$	$=$	$5(12.01)+$	1.01) +	.00)	$=$	$102.15 \mathrm{~g} / \mathrm{mol}$
			$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$			

Question 9 Using the smallest whole number integers possible, balance the following chemical 4 Points equations.

$$
\begin{array}{ll}
\text { 1. } 2 \mathrm{AgNO}_{3}(\mathrm{aq})+1 \mathrm{~K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) & =1 \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq}) \\
\text { 2. } 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) & =6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+4 \mathrm{CO}_{2}(\mathrm{~g})
\end{array}
$$

Question 10 Give the correct name for each of the following ionic compounds.

1. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \quad$ Calcium hydrogen carbonate
2. $\mathrm{Na}_{3} \mathrm{P}$ Sodium phosphide
3. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{3}\right)_{3} \quad$ Iron(III) sulfite

Question 11 Give the correct formula for each of the following ionic compounds.
6 Points

1. Ammonium hydroxide
2. Potassium chlorite
3. Aluminum chromate
KClO_{2}
$\mathrm{Al}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$

Question 12 With respect to infrared, visible and ultraviolet electromagnetic radiation.
4 Points Which of these has:

1. The shortest wavelength: Ultraviolet
2. The greatest frequency: Ultraviolet

Question 13 A chemical reaction can be initiated by light that carries energy of $4.87 \times 10^{5} \mathrm{~J}_{\mathrm{Jol}}{ }^{-1}$. Only 6 Points light less than a certain wavelength will initiate the reaction.

What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

$$
\begin{array}{ll}
E=\left(4.87 \times 10^{5} \mathrm{~J} . \mathrm{mol}^{-1}\right) /\left(6.023 \times 10^{23} \mathrm{~mol}^{-1}\right) & =8.086 \times 10^{-19} \mathrm{~J} \\
v=\left(8.086 \times 10^{-19} \mathrm{~J}\right) /\left(6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right) & =1.220 \times 10^{15} \mathrm{~s}^{-1} \\
\lambda=\left(2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}\right) /\left(1.220 \times 10^{15} \mathrm{~s}^{-1}\right) & =2.457 \times 10^{-7} \mathrm{~m} \\
\lambda=2.46 \times 10^{-7} \mathrm{~m}
\end{array}
$$

Question 14 A general trend in atomic size is that as one progresses down a group the size increases.
5 Points Which one of the following salts might you expect to be insoluble in water?
MgS
CaS
BaS

Briefly justify your choice.
Coulomb's Law, All three have the same charge thus the one with the shortest distance between the charges would have the greatest force of attraction and the least tendency to dissolve in water, thus MgS.

Question 15 10 points

Question 16
12 Points

1. How many orbitals are there with an n value equal to 4?
2. How many nodal surfaces are associated with a 4 p orbital? 3
3. The orbital depicted on the left is: What type of orbital? p

Its n value is? 3
Its specific designation? $3 p_{y}$

1. Give the complete electronic configuration for:
$S: \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
$B r: \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{5}$
2. Give the Noble Gas (Valence) configuration for

$$
\begin{array}{ll}
I: & {[K r] 5 s^{2} 4 d^{10} 5 p^{5}} \\
K: & {[A r] 4 s^{1}}
\end{array}
$$

3. Give the symbol(s) of the Period 3 element(s) that is/are diamagnetic:

Mg and Ar

