Question 1 Using noble gas notation, write the electron configuration for the following:
10 Points

1. Co $[A r] 4 s^{2} 3 d^{7}$
2. $\mathrm{Cu}[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}_{10}$
3. $\mathrm{Fe}^{3+}[\mathrm{Ar}] 3 \mathrm{~d}^{5}$
4. $I^{-} \quad[X e]$ or $[K r] 5 s^{2} 4 d^{10} 5 p^{6}$
5. Dy $\quad[\mathrm{Xe}] 6 \mathrm{~s}^{2} 4 \mathrm{f}^{10} \quad(D y=$ Element 66)

Question 2 Arrange the following elements in order of increasing 5 Points size, by ranking then from 1 (smallest) to 5 (largest)

Cs	5	Ba	4
Ga	3	N	1

Si

Question
5 Points

Arrange the following elements in order of ionization energy, by ranking then from 1 (greatest) to 5 (smallest)
N

Si \qquad K 5
AI 3
Ca 4
$\mathbf{N} 1$
Si \qquad K 5
Al 3
Ca 4 5 Points

Arrange the following elements in order of metallic character, by ranking then from 1 (smallest) to 5 (greatest)

Question 5 Draw the best Lewis Dot structure for the following 15 Points

N_{2} $: N \equiv N:$	ClO_{3}^{-}
BeCl_{2}	XeF_{4}
HCN $\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:$	

Question 6 The following questions all relate to Ozone, O_{3}

12 Points 6 Points

3 Points

3 Points

1. The molecule has two resonance structure. Draw them.

2. The bond $O-O-O$ bond angle is approximately: 120
3. The O to O bond energy in kJ per mole is: (Circle the best choice)
a) $=498$
b) >498
c) $=138$
d) >138
e) <138

Question 7 The formal charge on the carbon and oxygen atoms in CO are:
6 Points

$$
C: \quad-1 \quad 0: \quad+1
$$

Question 8 Methane when combusted produces carbon dioxide and water according to:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}=\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Estimate the amount of energy produced upon the combustion of 1 mole of CH_{4} ?

$$
\begin{gathered}
\text { Bonds Broken - Bonds Formed } \\
4(\mathrm{C}-\mathrm{H})+2(\mathrm{O}=\mathrm{O})-2(\mathrm{C=O})-4(\mathrm{O}-\mathrm{H}) \\
4(414)+2(498)-2(803)-4(464)=-810 \mathrm{~kJ}
\end{gathered}
$$

Question 9
8 Points

What is the bond angle about the numbered atoms?

1. 109
2. 120
3. 109
4. 109

Question 10 28 Points

The following questions refer to the molecules depicted below.

A		$\ddot{O}=\stackrel{\rightharpoonup}{\mathrm{s}}=\ddot{\mathrm{O}}$:C̈\|-Be一C̈l:
E	$\text { : } \mathrm{F}-\stackrel{\mathrm{B}}{\mathrm{~S}}-\vec{F}:$	G	H :

1. List the structure(s) whose only bond angle is $\sim 180^{\circ}$

D, H
2. List the structures(s) whose epg is/are tetrahedral:

B, F
3. Give the electron pair geometry (epg) for:
A: Trigonal bipyramid
C: Trigonal planar
D: Linear
F: Tetrahedron
4. Give the molecular geometry for:
A: T-shaped
E: See saw
G: Trigonal bipyramid
H: Linear
5. Two of the above molecules have an angular/bent molecular geometry. They are:
C and F. Which one has the largest bond angle? C
6. Label the following molecules as either polar (P) or non polar (NP)
A: P
$C: P$
D: NP
$F: P$
$H: N P$

Do Not Write Below This Line

Exam II Score

