Question 1 6 Points

1. Give the number of significant figures in: $\mathbf{1 6 0 0}$
2. $[23.56-2.3] / 1.248 \times 10^{3}$

Report the answer in the correct number of significant figures: $1.70 \times 10^{-2}$
3. Diamond has a density of $3.513 \mathrm{~g} / \mathrm{cm}^{3}$. If a carat equals $\mathbf{0 . 2 0 0 \mathrm { g }}$. What is the volume in $\mathrm{cm}^{3}$ of a 1.32-carat diamond?

$$
7.51 \times 10^{-2}
$$

Question 2 A neutral atom has 92 protons and 146 neutrons. Fill in the three 6 Points blanks to complete the atomic symbol


Question 3 Which if any of the following species has the same number of neutrons as it does electrons? 6 Points Circle the correct answer(s).
${ }^{47}{ }_{24} \mathrm{Cr}^{+}$
${ }^{24} \mathrm{Mg}$
${ }^{59} \mathrm{Co}^{2+}$
${ }^{35} \mathrm{Cl}^{-}$
${ }^{125}{ }_{50} S n$

Question 4 Use the Periodic Table accompanying this exam to answer the following questions:

1. Name the only diatomic gas in Period 4

## Bromine

2. Symbol for the heaviest Alkali Earth element. Ra
3. Symbol for transition metal in Group VIB, Period 6. W
4. The Actinides belong to what Period? 7
5. Group VIIIA are collectively referred to as: Noble Gases

Question 6 Give the sign and magnitude of the charge associated with the following:

1. Hydrogen sulfate ion -1
2. Selenide ion -2
3. Chromate ion -2
4. Group VIA elements -2

Question 7 Sb has two naturally occurring isotopes:
4 Points

| Isotope | Exact Mass | Natural Abundance |
| :---: | :---: | :---: |
| ${ }^{121} \mathrm{Sb}$ | 120.904 | $57.30 \%$ |
| ${ }^{123} \mathrm{Sb}$ | 122.904 | $42.70 \%$ |
| What is the average | atomic mass of Sb ? | (Give your answer to 3 decimal places) |

$$
120.904(0.5730)+122.904(0.4270)=121.758
$$

Question 8 6 Points

1. What amount in moles, is represented by 3.00 g of $\mathrm{P}_{2} \mathrm{~F}_{4}$ ? [Show Work]

Molar Mass: $2(30.97)+4(19.00)=137.79 \mathrm{~g} / \mathrm{mol}$

| $3.00 \mathrm{~g} \mathrm{P}_{2} \mathrm{~F}_{4}$ | 1 mol |
| :--- | :--- |
|  | 137.79 g |$=\quad 2.17 \times 10^{-2} \mathrm{~mol} P_{2} F_{4}$

2. What is the percent carbon in $\mathrm{CCl}_{4}$ ?
$7.81 \%$

Question 9 Mesitylene is composed of carbon and hydrogen only. It is $89.93 \%$ C and its molar mass 6 Points is $120.19 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of mesitylene? [Show All Work]

| $C$ | $H$ |  |
| :---: | :---: | :---: |
| 89.93 g | 10.07 g | $\mathrm{C}_{3} \mathrm{H}_{4}=3(12.01)+4(1.01)=40.07 \mathrm{~g} / \mathrm{mol}$ |
| 7.498 mol | 9.970 mol | $\frac{120.19 \mathrm{~g} / \mathrm{mol}}{40.07 \mathrm{~g} / \mathrm{mol}}=3$ |
| 7.948 <br> 7.948 | 9.770 <br> 1 | 7.948 <br> 3 |
| $C_{9} H_{12}$ | 4 |  |
|  |  |  |

Question 10 Using the smallest whole number integers possible, balance the following chemical 4 Points equations.

1. $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})=\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
2. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+4 \mathrm{CO}_{2}(\mathrm{~g})$

Question 11 Give the correct name for each of the following ionic compounds.
4 Points

1. $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2} \quad$ Calcium nitrite
2. $\mathrm{Na}_{2} \mathrm{~S}$ Sodium sulfide
3. $\mathrm{Fe}(\mathrm{OH})_{3} \quad$ Iron(III) hydroxide
4. $\mathrm{K}_{2} \mathrm{CrO}_{4} \quad$ Potassium chromate

Question 12 Give the correct formula for each of the following ionic compounds.
4 Points

1. Ammonium carbonate
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
2. Potassium chlorite
$\mathrm{KClO}_{2}$
3. Aluminum oxide
$\mathrm{Al}_{2} \mathrm{O}_{3}$
4. Perchloric acid
$\mathrm{HClO}_{4}$


The yellow region has greater energy than the red region while the green region has a greater/higher frequency than the yellow region. The blue region has the greatest/highest frequency of all the regions depicted.

Question 14 A chemical reaction can be initiated by light that carries energy of $5.34 \times 10^{5} \mathrm{~J}_{\mathrm{Jol}}{ }^{-1}$. Only
6 Points light less than a certain wavelength will initiate the reaction. What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

$$
\begin{array}{r}
E \frac{5.34 \times 10^{5}{\mathrm{~J} . \mathrm{mol}^{-1}}_{6.023 \times 10^{23} \mathrm{~mol}^{-1}}=8.866 \times 10^{-19} \mathrm{~J}}{\nu=\frac{E}{h}=\frac{8.866 \times 10^{-19} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}}=1.338 \times 10^{15} \mathrm{~s}^{-1}} \\
\lambda=\frac{c}{v}=\frac{2.998 \times 10^{8} \mathrm{~m}^{-1}}{1.338 \times 10^{15} \mathrm{~s}^{-1}}=2.241 \times 10^{-7} \mathrm{~m}
\end{array}
$$

Question 15
4 Points

Question 16 6 points

1. Potassium has three naturally occurring isotopes $\left({ }^{39} \mathrm{~K},{ }^{40} \mathrm{~K},{ }^{41} \mathrm{~K}\right) .{ }^{40} \mathrm{~K}$ has a very low natural abundance. Which of the other two is the more abundant?
2. Circle the expected approximate abundance of the more abundant isotope?
$<30 \% \quad>30 \% \quad<60 \% \quad>60 \% \quad<90 \%$
3. How many orbitals are there with an $n$ value equal to 3 ? 9
4. How many nodal surfaces are associated with a 4 s orbital? 3
5. One of the following wave functions (orbitals) is not a solution of the Schrodinger Equation. Circle the one that is not.
$\begin{array}{llllllll}2 s & 2 p & 7 s & 3 d & 4 f & 5 g & 2 d & 9 p\end{array}$

Question 17
4 points


1. The orbitals depicted above are what type:
d
2. The $n$ value of these orbitals is:

Question 18 10 Points

1. Give the complete electronic configuration for:

$$
\begin{array}{ll}
C l: & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \\
C a: & 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}
\end{array}
$$

2. Give the Noble Gas (Valence) configuration for

$$
\begin{array}{ll}
\text { S: } & {[\mathrm{Ne}] 3 s^{2} 3 p^{4}} \\
\text { K: } & {[\mathrm{Ar}] 4 s^{1}}
\end{array}
$$

3. Give the symbol(s) of the Period 4 transition metals (elements 21-30) that is/are diamagnetic: Zn

Do Not Write Below This Line


