Question 1
10 Points

1. The atoms that form a sigma bond by the overlap of an sp and an sp hybrid orbitals?

1 and 2

2. The bonding between N1 and C2 is best described as:
a) A triple bond
c) 2 pi bonds and 1 sigma bond
b) A double bond and a sigma bond
d) 3 pi bond
e) 2 sigma bonds and a pi bond
f) covalent bonding
3. The bonding between H 6 and C 3 is best described as being the overlap of the sp^{3} orbital on C3 with the 1s orbital on H6

Question 2 Classify each of the following salts as being either soluble (S) or non-soluble (NS) in 12 Points water?
a) Silver (I) hydroxide
NS
b) $\mathrm{Na}_{2} \mathrm{SO}_{4} \quad \mathrm{~S}$
c) Ammonium sulfide
S
d) FeCO_{3}
NS

Question 3 Indicate whether a precipitate is expected when each of the following pairs of aqueous 8 Points solutions are mixed. If a precipitate forms, give the formula for the precipitate.

1. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and KCl
2. Iron(II) nitrate and sodium carbonate

$$
0-1+2+0
$$

3. CuCl_{2} and $\mathrm{NH}_{4} \mathrm{SO}_{4}$

Yor N
Yor N
$\mathrm{PbCl}_{2}(\mathrm{~s})$
$\mathrm{FeCO}_{3}(\mathrm{~s})$
Yor N
Question 4 In the laboratory you dilute 2.50 mL of a concentrated 3.00 M nitric acid solution to a 6 Points total volume of 150 mL . What is the concentration of the dilute solution?

$$
\begin{aligned}
& 3.00 \mathrm{M} \times 0.0025 \mathrm{~L}=7.5 \times 10^{-3} \mathrm{~mol} \mathrm{HNO}_{3} \\
& \frac{7.5 \times 10^{-3} \mathrm{~mol}}{0.150 \mathrm{~L}}=5.0 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

Question 5 12 Points

1. Consider the reaction when aqueous solutions of calcium nitrate and potassium sulfate are combined. The net ionic equation for this reaction is:

$$
\mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-}=\mathrm{CaSO}_{4}(\mathrm{~s})
$$

2. Write a net ionic equation for the reaction that occurs when aqueous solutions of sodium hydroxide and nitrous acid $\left(\mathrm{HNO}_{2}\right)$ are combined.

$$
\mathrm{OH}^{-}+\mathrm{HNO}_{2}(\mathrm{aq})=\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

3. Write a net ionic equation for the reaction that occurs when aqueous solutions of ammonium carbonate and hydrobromic acid are combined.

$$
\mathrm{CO}_{3}^{2-}+2 \mathrm{H}^{+}=\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Question 6 A sample of ethylene glycol with a mass of 57.0 g at $8^{\circ} \mathrm{C}$ is placed into a perfectly insulated 8 Points container together with 79.0 g of glass at $34^{\circ} \mathrm{C}$. Calculate the final temperature of the sample when thermal equilibrium is reached?
Heat capacities: \quad Glass $=0.84 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad$ Ethylene glycol $=2.14 \mathrm{~J} / g^{\circ} \mathrm{C}$

$$
\begin{gathered}
q_{\text {glycol }}=57.0 \times 2.14 \times\left(T_{f}-8\right) \\
q_{\text {glycol }}=121.98 \mathrm{~T}_{f}-975.84 \\
q_{\text {glass }}=79.0 \times 0.84 \times\left(T_{f}-34\right) \\
q_{\text {glass }}=66.36 \mathrm{~T}_{f}-2256.24 \\
q_{\text {glycol }}+q_{\text {glass }}=0 \\
121.98 \mathrm{~T}_{f}-975.84+66.36 \mathrm{~T}_{f}-2256.24=0 \\
188.34 \mathrm{~T}_{f}=3232.08 \\
T_{f}=17.16^{\circ} \mathrm{C}
\end{gathered}
$$

Question 7 Given the following thermodynamic data:
8 Points

$$
\begin{array}{ll}
\Delta \mathrm{H}^{0} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~s})=11.0 \mathrm{~kJ} / \mathrm{mol} & \Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.8 \mathrm{~kJ} / \mathrm{mol} \\
\Delta \mathrm{H}^{0} \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=-241.8 \mathrm{~kJ} / \mathrm{mol} & \Delta \mathrm{H}_{\mathrm{f}}^{0} \mathrm{HNO}_{3}(\mathrm{aq})=-207.4 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Determine the enthalpy change associated with the following reaction:

$$
\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=2 \mathrm{HNO}_{3}(\mathrm{aq})
$$

$$
\begin{gathered}
\Delta H_{r \times n}^{0}=2 \Delta H^{0}{ }_{f} \mathrm{HNO}_{3}(\mathrm{aq})-\Delta H_{f}^{0} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\Delta \mathrm{H}^{0}{ }_{f} \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
\Delta H_{r \times n}^{0}=2(-207.4)-[11.0-285.8] \\
\Delta H_{r \times n}^{\circ}=-140 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

Question $8 \quad 14.0 \mathrm{~g}$ of LiF are dissolved in 155.0 g of water in a calorimeter the following data was 8 Points collected:

$$
\begin{array}{ll}
\text { Initial Temperature: } & 41.1^{\circ} \mathrm{C} \\
\text { Final Temperature: } & 58.5^{\circ} \mathrm{C}
\end{array}
$$

Heat capacity of the solution $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$ Calorimeter constant $=63.9 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

What is the heat of solution for this compound in $\mathrm{J} / \mathrm{mol}$?

$$
\begin{aligned}
& \begin{array}{l|l}
14.0 \mathrm{~g} \text { LiF } & 1 \mathrm{~mol} \text { LiF } \\
\hline & 25.94 \mathrm{~g} \mathrm{LiF}
\end{array}=0.540 \mathrm{~mol} \mathrm{LiF} \\
& q_{\text {water }}=169.0 \times 4.184 \times 17.4=12.3 \times 10^{3} \mathrm{~J} \\
& q_{\text {calorimeter }}=63.9 \times 17.4=1.11 \times 10^{3} \mathrm{~J} \\
& q_{r \times n}=q_{\text {water }}+q_{\text {calorimeter }}=13.4 \times 10^{3} \mathrm{~J}(\text { per } 0.540 \mathrm{~mol} \text { LiF }) \\
& q_{r \times n}=24.8 \times 10^{3} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

Question 9 Increasing the temperature of a sample of gas in a contained causes the pressure to 8 Points increase. What two factors contribute to this increase in pressure?

1. Number of collisions with the walls of the container increases.
2. Force (momentum) of the collisions increases.

Question 10 8 Points

How many grams of solid potassium hydroxide are needed to exactly neutralize 28.2 mL of a 1.18 M hydrochloric acid solution? Assume that the volume remains constant.

$$
\begin{gathered}
\mathrm{KOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})=\mathrm{KCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
1.18 \times 0.0282=3.33 \times 10^{-2} \mathrm{~mol} \mathrm{HCl} \\
3.33 \times 10^{-2} \mathrm{~mol} \mathrm{HCl} \\
\hline 1 \mathrm{KOH} \\
\hline 1 \mathrm{HCl}
\end{gathered}=3.33 \times 10^{-2} \mathrm{~mol} \mathrm{KOH}
$$

Question 11 For the following reaction, 63.6 grams of KOH are allowed to react with 34.4 grams of 12 Points $\quad \mathrm{H}_{3} \mathrm{PO}_{4}$.

$$
3 \mathrm{KOH}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})=\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

1. What is the maximum amount (in moles) of potassium phosphate that can be formed?
2. What is the FORMULA for the limiting reagent?
3. What amount (in moles) of the excess reagent remains after the reaction is complete?

63.6 g KOH	1 mol KOH
	56.11 g KOH

$$
\begin{array}{l|l}
1.13 \mathrm{~mol} \mathrm{KOH} & 1 \mathrm{~K}_{3} \mathrm{PO}_{4} \\
\hline & 3 \mathrm{KOH}
\end{array}=3.78 \times 10^{-1} \mathrm{~mol} \mathrm{~K}_{3} \mathrm{PO}_{4}
$$

$34.4 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$	$1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$
	$98.0 \mathrm{~g} \mathrm{H}_{3} \mathrm{PO}_{4}$

$3.51 \times 10^{-1} \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$	$1 \mathrm{~K}_{3} \mathrm{PO}_{4}$
	$1 \mathrm{H}_{3} \mathrm{PO}_{4}$

$3.51 \times 10^{-1} \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$	3 KOH
	$1 \mathrm{H}_{3} \mathrm{PO}_{4}$

$1.13-1.05=0.08 \mathrm{~mol} \mathrm{KOH}$

Ans:

1. $3.51 \times 10^{-1} \mathrm{~mol}$
2. $\mathrm{H}_{3} \mathrm{PO}_{4}$
3. 0.08 mol
