Question 1 Give the noble gas electronic configuration for the following:

8 Points

1. P^{3-} [Ar] or [Ne]3s²3p⁶

2. Co [Ar]4s²3d⁷

3. Cr [Ar]4s¹3d⁵

4. Fe^{2+} [Ar]3d⁶

Question 2 Consider the two elements lithium and beryllium: 10 Points

1. Greatest metallic character?

2. Highest ionization energy? Be

3. Least electronegative?

Consider the two elements fluorine and chlorine

4. Greatest electron affinity?

5. Smallest atomic size?

Question 3 Draw the $\underline{\text{best}}$ Lewis Dot structures for the following: 16 Points

NO ₂ ⁺	SF ₄
ё=»=ё ^{¬+}	:F.— ; F: F: F:
BCI ₃	I ₃ -
:ċi: :ċi—B—ċi:	: <u>ii—ji</u> — <u>ji:</u>].

Question 4 Which of the following molecules is expected to have a nitrogen to oxygen bond length closest to 136pm? [Circle your choice]

	NO⁺	NO ₂ ⁺	NO ₂ -
4 Points	:N≡0:1 ⁺	ё=и=ё ^{Т+}	ö= N−ö: ¬
			:Ö— N=Ö .
	NO Bond Order = 3	NO Bond Order = 2	NO Bond Order = $1\frac{1}{2}$

Briefly justify your choice?

9 Points

6 Points

136pm = NO single bond. Looking for the molecule with a bond order closest to 1.

Question 5 The molecule N₂O, connectivity N-N-O, has three resonance structures. Draw all three.

1110 1110100010 1 120 7 0011110011111	1 11 11 0, 11as 1111 00 1 00011a1100	on dordros. Or an an initios.
1.	2.	3.
:N≡N-Ö:	<u>N</u> =N=Ö	: <u>N</u> —N≡0:
[0] [+1] [-1]	[-1] [+1] [0]	[-2] [+1] [+1]

Using formal charges can you eliminate one of these structures? If so which one? Briefly justify your answer.

Structure 3 Can definitely be eliminated. Structure 2 also a possible candidate.

Question 6 Using the average bond estimate the amount of energy that would be produced by the combustion of 1 mole of H_2CO ?

$$H_2CO(g) + O_2(g) = H_2O(g) + CO_2(g)$$
 $H = \ddot{O} = \ddot{O} = H = \ddot{O} = \ddot{O} = \ddot{O} = \ddot{O}$

 ΔH_{rxn} = $\Sigma Bonds$ Broken - $\Sigma Bonds$ Formed ΔH_{rxn} = 2(C-H) + (C=O) + (O=O) - 2(O-H) - 2(C=O) ΔH_{rxn} = 2(414) + (745) + (498) - 2(464) - 2(803) =**-463kJ.mol**⁻¹

Question 7 36 Points

The following questions refer to the molecules depicted below.

A	B	С	D
: <u>F</u> -ci-F: :F:	:ö: ¬- :ö:-ö: :o:	<u>ö</u> = ÿ = <u>ö</u>	:F:
E	F	G	Н
:F.—;;: :F.: :F.:	: <u>F</u> — <u>S</u> — <u>F</u> :	:F: / F: :F: - P / F: :F: ''	:Ö—Ö=Ö 1 2

- 1. What is the electron pair geometry of:
 - A Trigonal Bipyramid

C Trigonal planar

B Tetrahedron

- F Tetrahedron
- 2. What is the molecular geometry of:
 - D Tetrahedron

G Trigonal Bipyramid

E Sea Saw

- H Angular or Bent
- 3. What is the formal charge on the oxygen atoms in H
 - O1: -1

- O2: 0
- 4. What is the $\mbox{\bf oxidation number}$ on the oxygen atoms in $\mbox{\bf H}$
 - O1: -1

- O2: 0
- 5. What is the **bond angle** about the central atom in:
 - C: 120
- F: 109

- H: 120
- 6. Which, if any, of the above are non-polar?
- B, D, G