A piece of copper has a mass of 640 kg. Using dimensional analysis and the conversion Question 1 6 Points data given below, what is the volume of the sample, in units of liters?

> $1 \text{ cm}^3 \text{ Cu} = 8.8 \text{ g Cu}$ 9.5×10^{21} atoms Cu = 1 g Cu $1 \text{ cm}^3 = 1 \text{ mL}$ 1 kg = 1000g $1L = 1000 \text{ cm}^3$

$$\frac{640 \text{ kg Cu}}{1 \text{ kg}} = 6.4 \times 10^5 \text{g Cu}$$

$$\frac{6.4 \times 10^5 \text{g Cu}}{8.8 \text{ g Cu}} = 7.3 \times 10^4 \text{cm}^3 \text{Cu}$$

$$\frac{7.3 \times 10^4 \text{ cm}^3 \text{Cu}}{1 \text{ L}} = 73 \text{L Cu}$$

$$1000 \text{ cm}^3$$
 =

Question 2 What is the charge of the ions formed from: (Give both magnitude and sign.) 4 Points

Ca	+2	F	-1
S	-2	К	+1

Question 3 Fill in the blanks in the following table:

4 Points

Protons	Neutrons	Electrons	Complete Atomic Symbol
39	51	38	⁹⁰ 39 ∀ ⁺
20	20	18	⁴⁰ 20 Ca ⁺²

Classify each of the following elements as: Question 4 8 Points Pick the most appropriate from the following: Metal, Non Metal, Halide, Noble Gas, Alkali Metal, Alkali Earth Metal, Transition Metal, Lanthanide or Actinide.

Element Number 68	Lanthanide	Element Number 12	Alkali Earth Metal
86	Noble Gas	19	Alkali Metal
27	Transition Metal	13	Metal
53	Halide	16	Non Metal

* Element number 13 when it reacts likes to loose electrons

Question 5 Eu has two naturally occurring isotopes:

6 Points

3	Isotope	Exact Mass	Natural Abundance
	¹⁵¹ Eu	150.919860	47.80%
	¹⁵³ Eu	152.921243	52.20%
	What is the a	vanage atomic marc of Eug	(Give your enguer to 6 decimal

What is the average atomic mass of Eu? (Give your answer to 6 decimal places)

150.919860(0.4780) + 152.921243(0.5220) = **151.964582**

Question 6 A sample of cinnamaldehyde, C₉H₈O, has a mass of 23.53g. Who many moles of cinnamaldehyde does this represent?

 $C_9H_8O = 9(12.01) + 8(1.01) + (16.00) = 132.17 \text{ g/mol}$

 $\frac{23.50g C_9H_8O}{132.17 g} = 0.1778 \text{ mol } C_9H_8O$

Question 7	Analysis of a compound found it to contain:				
6 Points	K 49.413%	S 20.259%	O 30.330%		
	What is the empirical formula of this compound?				

K	S	О
49.413g	20.259g	30.330g
1.2638	0.63171	1.8956
1.2638	0.63171	1.8956
0.63171	0.63171	0.63171
2.006	1	3.007

K₂SO₃

- Question 8 Using the smallest whole number integers possible, balance the following chemical ^{9 Points} equations.
 - 1. $C_3H_8 + 5 O_2 = 4 H_2O + 3 CO_2$
 - 2. $2 Fe_2O_3 + 3C = 4 Fe + 3CO_2$
 - 3. 2 $CH_3OH + 3 O_2 = 4 H_2O + 2 CO_2$

Question A chemical reaction can be initiated by light that carries energy of 3.79x10⁵ J.mol⁻¹. Only 9 light less than a certain wavelength will initiate the reaction.

7 Points

What is the longest wavelength, in meters, that can deliver the required energy? $\frac{3.79 \times 10^5 \text{J.mol}^{-1}}{6.023 \times 10^{23}} = 6.29 \times 10^{-19} \text{J}$ $E = hv \qquad \qquad \lambda v = c \\ 6.29 \times 10^{-19} J = (6.626 \times 10^{-34} J.s) v \qquad \qquad \lambda (9.49 \times 10^{14} s^{-1}) = 2.998 \times 10^8 \text{ m.s}^{-1} \\ v = 9.49 \times 10^{14} s^{-1} \qquad \qquad \lambda = 3.16 \times 10^{-7} \text{ m}$ Question Give the correct name for each of the following ionic compounds.

10					
4 Points	1.	MgO	Magnesium o	xide	
	2.	Ca(NO ₂) ₂	Calcium nitri	te	
	3.	FeP	Iron(III) ph	osphide	
	4.	CuCl₂	Copper(II) c	hloride	
Question 11	Give t	he correct formula f	or each of the	following ionic compounds.	
4 Points	1.	Ammonium nitrate		NH ₄ NO ₃	
	2.	Lithium hydrogen su	llfate	LiHSO4	
	3.	Potassium chlorate		KClO ₃	
	4.	Aluminum phosphate	2	AIPO ₄	
Question 12 6 Points	α.	What type of orbitc the right? (s, p, d, f	•	on	r ² Ψ ²
				D z	r(a ₀)
	b.	What is the principo number for this orb	•		
	c.	What is the specific this orbital?	c designation f	or ×	z
				Boundary Surface	Dot Picture
				3D	

3D_{xz}

Question 13 Which of the following orbital designations are solutions to the Schrodinger Equation. ^{6 Points} [Check those that apply]

8s 4p 2d 3f 2p

Question 14 Give the Complete Electronic Configuration (Spectroscopic Notation) for the following: 6 Points

- 1. C 1s²2s²2p²
- 2. Al 1s²2s²2p⁶3s²3p¹
- 3. Br 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁵
- Question 15 Give the Noble Gas Electronic Configuration for the following: 6 Points
 - 1. Cl [Ne]3s²3p⁵
 - 2. Ca [Ar]4s²
 - 3. Se [Ar]4s²3d¹⁰4p⁴
- Question 16 Which of the following elements are paramagnetic? ^{6 Points} [Check those that are]
 - Li Mg C Ar O
- Question 17 In the visible region of the electromagnetic spectrum, red and blue light lie at the extremes. Which of these has:
 - 1. The longest wavelength: Red
 - 2. The highest frequency: Blue
 - 3. The smallest energy: Red