Question 1
6 Points

1. Give the number of significant figures in: 160
2. $[23.56-2.3] / 1.248 \times 10^{3}$

Report the answer in the correct number of significant figures: 1.70×10^{-2}
Question 2 Fill in the blanks in the following table:
8 Points

Protons	Neutrons	Electrons	Complete Atomic Symbol
12	12	10	${ }^{24}{ }_{12} \mathrm{Mg}^{+2}$
35	45	36	${ }_{35}{ }_{35} \mathrm{Br}^{-}$

Question 3 Use the Periodic Table accompanying this exam to answer the following questions:

1. Name the only diatomic gas in Group VIA
2. Symbol for the lightest Alkali Earth element.
3. Symbol for transition metal in Group IB, Period 5.
4. Group IIA Metals like to have this charge. 2+
5. The Lanthanides belong to what Period?
6. Group VIIIA are collectively known to as:

Oxygen
Be
Ag

6
Noble Gases

Question 4 Eu has two naturally occurring isotopes:
5 Points

Isotope	Exact Mass	Natural Abundance
${ }^{151} \mathrm{Eu}$	150.920	47.80%
${ }^{153} \mathrm{Eu}$	152.921	52.20%

What is the average atomic mass of Eu? (Give your answer to 3 decimal places)

$$
150.920(0.4780)+152.921(0.5220)=151.965
$$

Question 5 A sample of citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, contains 0.632 mol of the compound. What is the mass 4 Points of this sample, in grams? [Show All Work]

$$
\begin{aligned}
& \text { Molar Mass }=6(12.01)+8(1.01)+7(16.00)=192.14 \mathrm{~g} / \mathrm{mol} \\
& \begin{array}{l|l}
0.632 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} & 192.14 \mathrm{~g} \\
\hline & 1 \mathrm{~mol}
\end{array}=121 \mathrm{~g}
\end{aligned}
$$

Question 6 An unknown compound is composed of:
7 Points
C 63.15\%
H 5.30\%
O 31.55\%
It has a molar mass of 456.5 g . Determine the formula of this compound.
[Show All Work]

C	H	0
63.15 g	5.30 g	31.55 g
5.258 mol	5.248 mol	1.972 mol
5.258		5.248
1.972	1.972	1.972
2.666	2.661	1.972
5.332	5.322	1
7.998	7.983	2
8	8	3
		3
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}=8(12.01)+8(1.01)+3(16.00)=152.16 \mathrm{~g} / \mathrm{mol}$		
	$C_{24} \mathrm{H}_{24} \mathrm{O}_{9}$	

Question 7 Using the smallest whole number integers possible, balance the following chemical 6 Points equations.

1. $2 \mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+9 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+6 \mathrm{CO}_{2}(\mathrm{~g})$
2. $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{gr})=4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(q)$

Question 8 Give the correct name for each of the following ionic compounds.
12 Points

1. CuS Copper(II) sulfide
2. $\mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{2} \quad$ Calcium carbonate
3. $\mathrm{Na}_{3} \mathrm{P}$ Sodium phosphide
4. $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \quad$ Iron(II) phosphate

Question 9 Give the correct formula for each of the following ionic compounds.
12 Points

1. Ammonium hydroxide
2. Iron(II) sulfite
3. Potassium chlorate
KClO_{3}
4. Aluminum chromate

$$
\mathrm{Al}_{2}\left(\mathrm{CrO}_{4}\right)_{3}
$$

Question 10 In the visible region of the electromagnetic spectrum, red and blue light lie at the 6 Points extremes. Which of these has:

1. The longest wavelength: Red
2. The smallest frequency: Red
3. The least energy: Red

Question 11 A chemical reaction can be initiated by light that carries energy of $4.56 \times 10^{5} \mathrm{~J}_{\mathrm{Jol}}{ }^{-1}$. Only
7 Points light less than a certain wavelength will initiate the reaction.
What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

$$
\begin{aligned}
& E=\frac{4.56 \times 10^{5} \mathrm{~J}^{23} \mathrm{~mol}^{-1}}{6.023 \times 10^{-1} \mathrm{~mol}^{-1}}=7.571 \times 10^{-19} \mathrm{~J} \\
& v=\frac{E}{h}=\frac{7.571 \times 10^{-19} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}}=1.143 \times 10^{15} \mathrm{~s}^{-1} \\
& \lambda=\frac{c}{v}=\frac{2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}}{1.143 \times 10^{15} \mathrm{~s}^{-1}}=2.62 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

1. The orbital depicted above is of what type?
d
2. The n value of this orbital is? 4
3. Its complete designation is?
$4 d_{z 2}$
$\left(x y, x z, y z, x^{2}-y^{2}, z^{2}\right)$

Do Not Write Below This Line

