Question 1
4 Points

Question 2 8 Points Give the noble gas configuration for the following
a. Br
$[A r] 4 s^{2} 3 d^{10} 4 p^{5}$
c. Cu
$[A r] 4 s^{1} 3 d^{10}$
b. Fe^{2+}
[Ar]3d ${ }^{6}$
d. F^{-}
$[\mathrm{He}] 2 s^{2} 2 p^{6}$ or $[\mathrm{Ne}]$

Question 3 6 Points

Question 4 4 Points

Question 5
5 Points

Question 6 5 Points

Question 7

 16 PointsHow many valence electrons do the following atoms possess?
a. $\mathrm{Al}^{3+} \quad 8$
b. Ne 8
c. Cu
11

Arrange the following elements in order of increasing ionization energy, by ranking then from 1 (smallest) to 5 (greatest)
How many diamagnetic elements are there in period 6?
4

Ca	3	Ge	4
Rb	1	Sr	2
P	5		

I belong to the $3^{\text {rd }}$ period on the Periodic Table. I am less metallic than magnesium, less electronegative than phosphorous, and I am smaller than silicon.
Who am I?
Al (Symbol)
Draw the best Lewis Dot structure for the following

Question 8
10 Points
(6 Points)

Circle the correct answer:

Average bond length table is on the front page of this exam.

(4 Points)

Question 9 6 Points

Question 10
5 Points

Question 11 9 Points

A Lewis structure for ozone, O_{3} is depicted below:

Give the formal charge on each of the oxygen atoms.

1. $>134 \mathrm{pm}$
2. $<134 \mathrm{pm}$
3. $=134 \mathrm{pm}$
4. $=136 \mathrm{pm}$
5. $>136 \mathrm{pm}$
6. $=115 \mathrm{pm}$
7. > 115 pm

The \mathbf{N} to \mathbf{O} bond length is expected to be:

O2: +1
O3: 0

Phosgene, $\mathrm{Cl}_{2} \mathrm{CO}$ is a highly toxic gas. Using the bond energies given on the front page of this exam, estimate the enthalpy change for the reaction of carbon monoxide and chlorine to produce phosgene.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{Cl}_{2} \mathrm{CO}(\mathrm{~g})
$$

$C \equiv O+C l-C l-\{2(C-C l)+C=O\}$

$$
1075+243-\{2(330)+745\}=-87 \mathrm{~kJ} / \mathrm{mol}
$$

a. The bond angle around: 1: ~109
b. The symbol for:

X: C

A hypothetical organic molecule is depicted on the left. H is hydrogen and X, Y and Z are period 2 elements. The following questions pertain to this molecule

2: 120
3: ~109
$y: N$
Z: 0
c. The number of lone pairs in this molecule:

5

Question 12 22 Points

The following questions refer to the molecules depicted below.

A		$\ddot{O}=c=\ddot{0}$	$\begin{gathered} D \\ :\|\overrightarrow{: \mid}\| \end{gathered}$
$\ddot{O}=\ddot{\mathrm{s}}=\ddot{\mathrm{O}}$	F		H Ö=N=Ö+

1. List the structure(s) whose only bond angle is $\sim 180^{\circ}$

C, D, H
2. List the structures(s) whose epg is/are linear:
C, H
3. Give the electron pair geometry (epg) for:
A: Trigonal bipyramid
E: Trigonal planar
G: Tetrahedron
4. Give the molecular geometry for:

B: Seesaw
F: Trigonal planar
G: Trigonal pyramid
5. Label the following molecules as either polar (P) or non polar (NP)
$C: N P$
D: NP
H: NP

Exam II Score

