Question 1
4 Points

Question 2
6 Points

Question 3
4 Points

Lithium has two naturally occurring isotopes:

	Mass (amu)	Abundance
${ }^{6}{ }_{3} \mathrm{Li}$	6.015	7.42%
${ }^{7} \mathrm{Li}$	7.016	92.58%

What is the average atomic mass of Lithium? (Give your answer to 3 decimal places)

$$
6.015(0.0742)+7.016(0.9258)
$$

6.942 amu

Use the Periodic Table accompanying this exam to answer the following questions:

1. Formula for the only diatomic in Period 5 I
2. Symbol for the heaviest Alkali Earth element. Ra
3. Symbol for transition metal in Group VIB, Period 6. W
4. Group IIIA Metals like to have this charge. +3
5. Uranium (U) is a : (metal, nonmetal, metalloid) Metal
6. Group VIIA are collectively known as the: Halides

Assuming that the distance between the atoms are approximately the same which of the following ionic compounds would you expect to have the strongest force of attraction: (Circle your choice)
a) Sodium chloride
b) Magnesium sulfide
c) Aluminum phosphide

Briefly justify your choice:
AIP - $\mathrm{Al}^{3+} \ldots \mathrm{P}^{3-}$ has the greatest charges. $\mathrm{MgS}-\mathrm{Mg}^{2+} \ldots \mathrm{S}^{2-}: \mathrm{NaCl}-\mathrm{Na}^{+} \ldots \mathrm{Cl}^{-}$

Question 6 8 Points

Give the correct name for each of the following ionic compounds.

1. CuS
Copper(II) sulfide
2. $N a_{3} \mathrm{P}$ Sodium phosphide
3. $\mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{2}$ Calcium carbonate
4. $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ Iron(II) phosphate

Question 7
8 Points

Question 8 8 Points

Give the correct formula for each of the following ionic compounds.

1. Ammonium hydroxide $\mathrm{NH}_{4} \mathrm{OH}$
2. Potassium chlorate KClO_{3}
3. Iron(II) sulfate
FeSO_{4}
4. Aluminum chromate $\mathrm{Al}_{2}\left(\mathrm{CrO}_{4}\right)_{3}$

Morphine, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}$
A. 0.25 mol of Morphine weighs how many grams?

$$
\begin{aligned}
& 17(12.01)+19(1.01)+3(16.00)+14.01=285.37 \mathrm{~g} / \mathrm{mol} \\
& \begin{array}{l|l}
0.25 \mathrm{~mol} \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N} & 285.37 \mathrm{~g} \\
\hline & 1 \mathrm{~mol}
\end{array}=71 \mathrm{~g}
\end{aligned}
$$

B. How many grams of Carbon is there in 0.25 mol of Morphine?

51 grams
Question 9 4 Points

What is the mass percent of N in $\mathrm{N}_{2} \mathrm{O}_{5}$

$$
2(14.01)+5(16.00)=108.02 \mathrm{~g} / \mathrm{mol}
$$

$(28.02 / 108.02) \times 100$
25.94 \%

Question 10 6 Points

Butyric acid is composed of carbon (54.52\%), hydrogen (9.15\%) and oxygen (36.31%). Its molar mass is $88.11 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of the compound.

C	H	0	
54.52 g	9.15 g	36.31 g	
4.539 mol	9.059 mol	2.269 mol	$2(12.01)+4(1.01)+16=44.08 \mathrm{~g} / \mathrm{mol}$
4.539		9.059	2.269
2.269	2.269	2.269	
2.000	3.992	1	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
2	4	1	
			$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$

Question 11 9 Points

Question 12 6 Points

Question 13 4 Points

Balance the following chemical equations using the smallest whole number integers possible.

1. 1

$$
\mathrm{H}_{2}(\mathrm{~g})
$$

$$
+\quad 1 \mathrm{Cl}_{2}(\mathrm{~g})
$$

$$
=2 \mathrm{HCl}(\mathrm{~g})
$$

2. 2

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})
$$

$$
=6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
+4
$$

$$
\mathrm{CO}_{2}(\mathrm{~g})
$$

3. \qquad $\mathrm{KOH}(\mathrm{aq})+1 \mathrm{H}$ $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})=1$ $\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+3$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

In the visible region of the electromagnetic spectrum, red and blue light lie at the extremes. Which of these has:

1. The longest wavelength: Red
2. The least energy: Red

What is the frequency of ultraviolet light with a wavelength of 291 nm ?

$$
\begin{gathered}
291 \mathrm{~nm} \frac{1 \times 10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=2.91 \times 10^{-7} \mathrm{~m} \\
v=\frac{c}{\lambda}=\frac{2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}{2.91 \times 10^{-7} \mathrm{~m}}=1.03 \times 10^{-15} \mathrm{~s}^{-1}
\end{gathered}
$$

$1.03 \times 10^{-15} \mathrm{~Hz}$

A chemical reaction can be initiated by light that carries energy of $2.44 \times 10^{5}{\mathrm{~J} . \mathrm{mol}^{-1}}^{-1}$. Only light less than a certain wavelength will initiate the reaction.
What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

$$
\begin{aligned}
E & =\frac{2.44 \times 10^{5}{\mathrm{~J} . \mathrm{mol}^{-1}}_{6.023 \times 10^{23} \mathrm{~mol}^{-1}}=4.051 \times 10^{-19} \mathrm{~J}}{v=\frac{E}{h}}=\frac{4.051 \times 10^{-19} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}}=6.114 \times 10^{14} \mathrm{~s}^{-1} \\
\lambda=\frac{c}{v} & =\frac{2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}}{6.114 \times 10^{14} \mathrm{~s}^{-1}}=4.90 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

$4.90 \times 10^{-7} \mathrm{~m}$

