	L _	•••	4	1	4
C	he	m	1	1	ı

Summer 2007

Key I

Whelan

Question 1
4 Points

When the following calculation is carried out the answer should be reported to how many significant figures?

$$(168) \boxed{ \frac{11.564 - 11.32}{1.248 \times 10^3}}$$

Significant Figures

2

Question 2
6 Points

A nucleus has 78 protons and 117 neutrons. Fill in the blanks to complete the atomic symbol.

Question 3
4 Points

Lithium has two naturally occurring isotopes:

	Mass (amu)	Abundance	
⁶ ₃Li	6.015	7.42%	
⁷ ₃Li	7.016	92.58%	

What is the average atomic mass of Lithium? (Give your answer to 3 decimal places)

$$6.015(0.0742) + 7.016(0.9258)$$

6.942 amu

Question 4
12 Points

Use the Periodic Table accompanying this exam to answer the following questions:

- 1. Formula for the only diatomic in Period 5
- 2. Symbol for the heaviest Alkali Earth element. Ra
- 3. Symbol for transition metal in Group VIB, Period 6. W
- 4. Group IIIA Metals like to have this charge. +3
- 5. Uranium (U) is a: (metal, nonmetal, metalloid) Metal
- 6. Group **VIIA** are collectively **known** as the: Halides

Question 5
5 Points

Assuming that the **distance** between the atoms are approximately **the same** which of the following ionic compounds would you expect to have the **strongest** force of attraction: (Circle your choice)

- a) Sodium chloride
- b) Magnesium sulfide
- c) Aluminum phosphide

Briefly justify your choice:

AIP - AI^{3+} ... P^{3-} has the greatest charges. MgS - Mg²⁺ ... S^{2-} : NaCI - Na⁺ ... CI^{-}

Question 6 8 Points

Give the correct name for each of the following ionic compounds.

- 1. CuS
- Copper(II) sulfide
- 3. Na₃P
- Sodium phosphide

- 2. $Ca(CO_3)_2$ Calcium carbonate
- 4. Fe₃(PO₄)₂ Iron(II) phosphate

Question 7 8 Points

Give the correct formula for each of the following ionic compounds.

- 1. Ammonium hydroxide
- NH₄OH
- 3. Potassium chlorate
- KCIO₃

2. Iron(II) sulfate

- FeSO₄
- 4. Aluminum chromate
- Al2(CrO4)3

Question 8 8 Points

Morphine, $C_{17}H_{19}O_3N$

A. 0.25 mol of Morphine weighs how many grams?

$$\frac{0.25 \text{ mol } C_{17} H_{19} O_3 N}{1 \text{ mol}} = 71g$$

grams

B. How many grams of Carbon is there in 0.25 mol of Morphine?

$$\frac{0.25 \text{ mol } C_{17}H_{19}O_3N}{1 C_{17}H_{19}O_3N} = 4.25 \text{ mol } C$$

51 grams

Question 9 4 Points

What is the mass percent of N in N₂O₅

(28.02/108.02)x100

Question 10 6 Points

Butyric acid is composed of carbon (54.52%), hydrogen (9.15%) and oxygen (36.31%). Its molar mass is 88.11 g/mol. Determine the molecular formula of the compound.

C	Н	0
54.52 g	9.15 g	36.31 g
4.539 mol	9.059 mol	2.269 mol
4.539	9.059	2.269
2.269	2.269	2.269
2.000	3.992	1
2	4	1

 C_2H_4O 2(12.01) + 4(1.01) + 16 = **44.08** g/mol

C4H8O2

Question 11
9 Points

Balance the following chemical equations using the **smallest** whole number integers possible.

1.
$$1 H_2(g) + 1 Cl_2(g) = 2 HCl(g)$$

2.
$$C_2H_6(g) + T_2O_2(g) = G_2H_2O(1) + G_2O(g)$$

3. 3
$$KOH(aq) + 1 H3PO4(aq) = 1 K3PO4(aq) + 3 H2O(I)$$

Question 12 6 Points

In the visible region of the electromagnetic spectrum, **red** and **blue** light lie at the extremes. Which of these has:

- 1. The longest wavelength:
 - Red
- 3. The smallest frequency: Red

- 2. The least energy:
- Red

Question 13
4 Points

What is the frequency of ultraviolet light with a wavelength of 291 nm?

291 nm
$$\frac{1 \times 10^{-9} \text{ m}}{1 \text{ nm}}$$
 = 2.91×10⁻⁷ m

$$v = \frac{c}{\lambda} = \frac{2.998 \times 10^8 \text{ m.s}^{-1}}{2.91 \times 10^{-7} \text{ m}} = 1.03 \times 10^{-15} \text{ s}^{-1}$$

1.03x10-15 Hz

Question 14
6 Points

A chemical reaction can be initiated by light that carries energy of 2.44×10^5 J.mol⁻¹. Only light less than a certain wavelength will initiate the reaction.

What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

$$E = \frac{2.44 \times 10^5 \text{ J.mol}^{-1}}{6.023 \times 10^{23} \text{ mol}^{-1}} = 4.051 \times 10^{-19} \text{ J}$$

$$v = \frac{E}{h} = \frac{4.051 \times 10^{-19} \text{ J}}{6.626 \times 10^{-34} \text{ J/s}} = 6.114 \times 10^{14} \text{ s}^{-1}$$

$$\lambda = \frac{c}{v} = \frac{2.998 \times 10^8 \text{ m.s}^{-1}}{6.114 \times 10^{14} \text{ s}^{-1}} = 4.90 \times 10^{-7} \text{ m}$$

Do Not Write Below This

Exam I Score