Chem 111

Summer 2011

Key III

Question 1	Classify each of the following molecules as polar or nonpolar?		
9 Points	1. SO3 Nonpolar 3. I3 Nonpolar		
	2. NCl3 Polar		
Question 2	There are <u>5</u> hybrid orbitals represented by the picture on		
10 101113	the left. They are composed of* <u>1 3 1</u>		
	atomic orbitals, corresponding to $\frac{sp^3d}{p}$ hybridization. They have		
	the electron pair geometry <u>Rigonal SipyRamid</u> with bond		
	angles of <u>70, 120</u> . (180)		
Quartian 2	6 - Give the number of each of these orbitals that make the hybrid orbital depicted.		
6 Points	a) The electron pair geometry of this molecule is <u>Trigonal planar</u>		
	b) The geometry of this molecule is <u>Bent/Angular (120°</u>)		
	c) The approximate bond angle in the molecule		
Question 4 4 Points	The compound chromium(III) nitrate is a strong electrolyte. Write the reaction when chromium(III) nitrate is put into water : $C_{\Gamma}(NO_{3})_{3}(5) = C_{\Gamma}^{3+} + 3NO_{3}^{-}$		
Question 5 9 Points	Give the formula for the precipitate that is formed when each of the following aqueous solutions are mixed. (If no precipitate is expected then write no precipitate)		
	1. Iron(III) bromide and sodium sulfide FegS3 (s)		
	2. Calcium chloride and ammonium iodide		
	3. Lead (II) nitrate and potassium chloride		
Question 6 5 Points	Write the net ionic equation for the reaction that takes places when aqueous solutions of silver(I) nitrate and nickel(II) chloride are combined. 2 Ag NO3(99) + Ni Q ₂ (99) = 2 Ag (Pls) + Ni (NO3) (99) 2 Ag ⁺ + 2 NO3 ⁻ + Ni ²⁺ + 2 Cl ⁻ = 2 Ag (Pls) + Ni ⁸⁺ + 2 NO3 ⁻		
	$2Ag^+ + 2Cl^- = 2AgCl(s)$		
	$Ag^+ + Cl^- = Ag Cl(s)$		

Write the net ionic equation for the reaction that takes places when aqueous solutions of Question 7 5 Points hydrofluoric acid (HF) and ammonia (NH₃) are combined. $HF(02) + NH_3(99) = NH_4F(92)$ HF(ag) + NHS(ag) = NH4 + F HF(aq) + NH3(aq) - NH4 + F Write the net ionic equation for the reaction that takes places when solid calcium Question 8 5 Points carbonate is added to perchloric acid. $C_{a}C_{3}(s) + 2 Hellou(92) = C_{a}(Clo_{4})_{a}(92) + H_{a}O(1) + Co_{2}(g)$ $C_0 C_{0_3(s)} + 2H^+ + 2Q_{0_4} = C_q^{2+} + 2Q_{0_4} + H_2Q_{1} + C_{0_2(q)}$ $G_{1}C_{2}G_{3}G_{3} + 2H^{+} = G_{1}^{2+} + H_{2}O(R) + CO_{2}G_{3}$ Question 9 In the laboratory a student finds that it takes **21.7 Joules** to increase the temperature 5 Points of 11.7 grams of liquid mercury from 22.3 to 36.8 degrees Celsius. Determine the **specific heat** of mercury. For full credit you must show work. NT= 36.8-22.3= 14.5°C $g = m \times C \times \Delta T$ 21.7 = 11.7 X C X 14.5 1

$$T = \frac{g_{1.7}}{11.7 \times 14.5} = 0.128 J/g.C$$

0.128 J/g.ºC

Question 10 5 Points A sample of solid gold is heated with an electrical coil. If **29.4 Joules** of energy are added to a **15.0 gram** sample and the final temperature is **38.7°C**, what is the **initial temperature** of the gold? Heat capacity of gold, **0.129 J/g.°C** For full credit you must show work.

 $q = M \times C \times \Delta T$ Tp - Ti = 15.2 $a9.4 = 15.0 \times 0.129 \times \Delta T$ 38.7 - Ti = 15.2 $\Delta T = \frac{29.4}{15.0 \times 0.129}$ -Ti = 15.2 - 38.7 $\Delta T = \frac{15.2}{15.0 \times 0.129}$ -Ti = -23.5 $\Delta T = 15.2^{\circ}C$ $Te = 23.5^{\circ}C$

23.5 °C

Question 11 The following thermochemical equation is for the reaction of hydrogen peroxide(1) to form water(1) and oxygen(g).

 $2 H_2O_2(I) = 2 H_2O(I) + O_2(g)$ $\Delta H = -196 \text{ kJ}$ How many grams of $H_2O_2(I)$ would have to react to produce **30.4 kJ** of energy? For full credit you must show work.

H202: 2(1.01) + 2(16.00) = 34.02 g. mol-1

$$\frac{30.4 \text{ kJ} 2 \text{ mol} H_2 0_2 34.029}{196 \text{ kJ} 1 \text{ mol}} = 10.69$$

/0.6 g H₂O₂

Question 12 ^{5 Points} 0.927 grams of benzoic acid is burned completely in a bomb calorimeter. The bomb is surrounded by 1.000 kg of water. The temperature increases from 25.12 to 29.36 degrees Celsius. If the heat capacity of the bomb is 1.60 kJ/°C, calculate the heat of combustion of the benzoic acid in kJ/gram. The specific heat of water is 4.184 J/g°C. <u>Circle the best answer!</u>

- 21.4 kJ/gram 18.9 kJ/gram
- 🕝 -26.5 kJ/gram
- o -32.7 kJ/gram

○ -9.2 kJ/gram

Question 15 In the laboratory you dilute 4.83 mL of a concentrated 6.00 M hydriodic acid solution to a total volume of 50.0 mL. What is the concentration of the dilute solution? For full credit you must show work.

#mol = 6.00(0.00483) = 2.90×10 HI

$$M = \frac{2.90 \times 10^{-2} \text{ mol HI}}{0.050 L} = 0.580$$

0.580 M

What is the **percent yield** for this reaction? For full credit you must show work and include a balanced chemical equation.

$$N_{2}(g) + O_{2}(g) = 2 NO(g)$$

$$N_{a}: a(14.01) = 28.02 g \cdot mol^{-1}$$

$$G \cdot \underline{54g} | \underline{1mol} = 0.237 mol N_{2}(g)$$

$$0.237 mol N_{2} | 2NO = 0.474 mol NO(g)$$

$$1 N_{2}$$

% Yield :
$$(\frac{12.59}{14.29})100 = 88\%$$

Question 17 ^{6 Points} For the following reaction, **3.69** grams of **chlorine gas** are mixed with **6.56×10⁻²** moles of **sodium iodide**.

> chlorine + sodium iodide = sodium chloride + iodine What is the maximum amount of iodine that can be formed? For full credit you must show work and include a balanced chemical equation.

$$\frac{CP_{a} + 2NqI_{z} = 2NqCP + I_{2}}{3.69g} = \frac{6.56 \times 10^{5} \text{ mol}}{6.56 \times 10^{5} \text{ mol}}$$

$$CQ_{a} : 2(35.45) = 70.90g \cdot \text{mol}^{-1}$$

$$\frac{3.69g}{100} \frac{CP_{a}}{100} = \frac{1}{5.20 \times 10^{-2}} \frac{100}{100} \frac{CP_{a}}{100}$$

$$5.20 \times 10^{-2} \text{ mol} \frac{CP_{a}}{100} = \frac{1}{100} = 5.20 \times 10^{-2} \text{ mol} I_{2}$$

$$1 CP_{a} = 5.20 \times 10^{-2} \text{ mol} I_{2}$$

3.28×10	x mol of iodine

Do Not Write Below This				
Exam III Score				