Question 1 10 Points

Question 2 3 Points

Question 3 6 Points
a. Give the correct number of significant figures for each of the following:
0.08524 :
4
21.10: 4
b. Report the answer for the following operation to the correct number of significant figures:

$$
23.46-1.101=22.36
$$

c. When 58.6 is divided by 1.0×10^{-2}, the answer should be reported to \qquad significant digits).
d. How many eggs are there in exactly 9 dozen?

Circle those of the following (if any) that have the same number of protons and electrons.
${ }^{1} \mathrm{H}^{+}$
${ }^{24} \mathrm{Mg}^{2+}$
${ }^{9} \mathrm{Be}$
${ }^{40} \mathrm{Ca}^{2+}$

A piece of copper has a volume of 0.5 L . How many atoms does the sample contain?
No need to do the calculation - just set up the correct dimensional analysis conversions you may not need to fill in all the boxes.

$1 \mathrm{~cm}^{3} \mathrm{Cu}=8.8 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
9.5×10^{21} atoms $\mathrm{Cu}=1 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$	

Question 4 6 Points

Question 5 4 Points

How many protons, neutrons and electrons are there in ${ }^{7} \mathrm{Li}^{+}$

$$
\text { Protons: } 3 \quad \text { Neutrons: } 4 \quad \text { Electrons: } 2
$$

A certain element consists of two stable isotopes.
The first has an atomic mass of 121 amu and a percent natural abundance of 57.3%.
The second has an atomic mass of 123 amu and a percent natural abundance of 42.7\% Show Work

$$
0.573(121)+0.427(123)=
$$

Question 6 10 Points

Question 7 2 Points

3 Points
Briefly justify your choice.

1. $\mathbf{C r}$ is in period \qquad
2. Element 64 is $a(n)$ Coulombic force of attraction?

Question 8 8 Points

Question 9 9 Points

Question 10 6 Points

Use the Periodic Table accompanying this exam to answer the following questions: and group \qquad _.
2. The symbol for the lightest alkali metal.
4. Group VIIA are collectively known as the:

Assuming that the distance is approximately the same. Circle the salt that has the greatest

- Potassium chloride
- Magnesium oxide
- Calcium sulfide
- Aluminum phosphate

Give the correct name for each of the following ionic compounds.
a. $\mathrm{NH}_{4} \mathrm{OH}$ ammonium hydroxide
c. $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ COpper (11) perchbrate
b. FeN

d. $\mathrm{Ca}\left(\mathrm{HSO}_{4}\right)_{2}$ Calcium hydrogen sulfate

Give the correct formula for each of the following ionic compounds.
a. Iron(II) sulfite \qquad
b. Sodium phosphate

c. Calcium chlorate

Calculate the mass percent of bromine in carbon tetrabromide.
Show Work
$C \quad \mathrm{Br}$
$12.01+4(79.90)$
$12.01+319.6=331.61 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
CBr_{4}
$12.01+319.6=331.61{\mathrm{~g} . \mathrm{mol}^{-1} \quad\left(\frac{319.6}{331.61}\right) 100=}^{2}=$

Question 11
8 Points

Question 12 6 Points

How many grams of oxygen are present in 1.59 moles of dioxygen difluoride? Show Work

\section*{| $1.59 \mathrm{~mol} \mathrm{O}_{2} \mathrm{~F}_{2}$ | 2 O |
| :--- | :--- |
| $1 \mathrm{O}_{2} \mathrm{~F}_{2}$ | |$=3.18 \mathrm{~mol} \mathrm{O}$}

A compound is found to contain 30.45% nitrogen and 69.55% oxygen by weight and has a molar mass of $92.02 \mathrm{~g} / \mathrm{mol}$. What is the formula of this compound?
Show Work

Question 13 6 Points

Question 13 6 Points

Balance the following chemical equations using the smallest whole number integers possible.

1. \qquad NO (g) $+2$

$$
H_{2}(g)=
$$

\qquad $\mathrm{N}_{2}(\mathrm{~g})$

$$
+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

2. Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)+$ Potassium hydroxide $=$ Potassium phosphate + water

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{KOH}=\mathrm{K}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

rays

Circle the correct answer to each of the following:
a. The one with the longest wavelength:
b. The one with the smallest frequency:
X ray
Visible
IR
IR
c. The one with the greatest energy:
IR
AM
AM
γ Rays
FM

Question 14 If your eyes receive a signal consisting of blue light, $\lambda=390 \mathrm{~nm}$. Determine the energy in 7 Points J. mol^{-1} of this light? Show Work

$$
\begin{aligned}
& 390 \mathrm{~nm} \left\lvert\, \frac{1 \times 10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=3.9 \times 10^{-7} \mathrm{~m}\right. \\
& \begin{array}{l}
\text { m } \\
\lambda r=c \\
3.9 \times 10^{-7}(\mathrm{v})=2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} \\
r=\frac{2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}}{}{ }^{-1} \\
3.9 \times 10^{-7} \mathrm{~m}
\end{array} \\
& r=7.69 \times 10^{14} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& E=h V \\
& E=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~S}\left(7.69 \times 10^{14} \mathrm{~s}^{-1}\right) \\
& E=5.09 \times 10^{-19} \mathrm{~J} \\
& E=5.09 \times 10^{-19} \mathrm{~J}\left(6.023 \times 10^{23} \mathrm{~mol}^{-1}\right)
\end{aligned}
$$

$3.07 \times 10^{5} \mathrm{J.mol}^{-1}$

