Question 1 6 Points

Question 2
5 Points

Classify each of the following molecules as polar or nonpolar?

1. BeCl_{2} \qquad 3. $\mathrm{NH}_{2} \mathrm{Cl}$ \qquad Polar
2. IF_{3}

Polar

 There are 6 hybrid orbitals represented by the picture on the left. They are composed of ${ }^{*}$ atomic orbitals, corresponding to $\operatorname{sp}^{3} d^{2}$ $\frac{1}{s} \frac{3}{p} \frac{2}{d}$ hybridization. They have the electron pair geometry \qquad with bond angles of \qquad .

* - Give the number of each of these orbitals that make the hybrid orbital depicted.

Question 3 6 Points

Question 4 6 Points

Question 5 4 Points

A molecule has $s^{3}{ }^{3}$ d hybridization with 2 lone pairs:
a) The electron pair geometry of this molecule is
b) The geometry of this molecule is

TRIGONAL BIPYRAMID

T- SHAPED
c) The approximate bond angle in the molecule 120°

Depicted below is the sigma bonds $H C \equiv C H$.

1. The sigma bond formed between the two carbon atoms is best described as being between the overlap of two SP_ hybrid orbitals.
2. The sigma bond formed between the hydrogen and carbon is best described as being the overlap of an $S p$ hybrid orbital on carbon with the 15 orbital on hydrogen.
3. If the pi bonds were to be depicted one would see \qquad 2 pi bonds).

The compound iron(II) sulfate is a strong electrolyte. Write the reaction when iron(II) sulfate is put into water:

\qquad $=\mathrm{Fe}^{2+}+\mathrm{SO}_{4}^{2-}$

Question 6
4 Points

Question 7 4 Points

Question 8 4 Points

Question 9 4 Points

Question 10 8 Points

Consider the reaction when aqueous solutions of aluminum sulfate and cobalt(II) nitrate are combined. The net ionic equation for this reaction is:

$$
N_{0}=\text { Reaction }
$$

Consider the reaction when aqueous solutions of sodium carbonate and ammonium nitrate are combined. The net ionic equation for this reaction is:

$$
N_{0}=\frac{\text { Reaction }}{}
$$

Write a net ionic equation for the overall reaction that occurs when aqueous solutions of potassium hydroxide and hydrosulfuric acid $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ are combined.

$$
\mathrm{H}_{2} \mathrm{~S}(\mathrm{qQ})+2 \mathrm{OH}^{-}=
$$

$$
\mathrm{S}^{2-}+2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

\qquad

Write a net ionic equation for the reaction that occurs when excess hydrofluoric acid (HF) and calcium carbonate are combined.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HF}(\mathrm{qq})=-\mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A 41.2 g sample of copper at $99.8^{\circ} \mathrm{C}$ is dropped into a beaker containing 153 g of water at $18.5^{\circ} \mathrm{C}$. What is the final temperature when thermal equilibrium is reached? Assume the beaker neither absorbs nor loses heat.
Heat Capacities: $\quad \mathrm{Cu}=0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad \mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
For full credit you must show work.

$$
\begin{aligned}
q_{C u} & =41.2(0.385) \Delta T \\
& =15.86 \Delta T=15.86\left(T_{f}-99.8\right)=15.86 T_{f}-1583 \\
q_{H_{2} O} & =153(4.184) \Delta T \\
& =640 \Delta T=640\left(T_{f}-18.5\right)=640 T_{f}-11840 \\
\Sigma q_{15} & =0 \\
&
\end{aligned}
$$

Question 11
5 Points

A sample of solid silver is heated with an electrical coil. If 33.6 Joules of energy are added to a $\mathbf{1 3 . 0}$ gram sample and the final temperature is $35.2^{\circ} \mathrm{C}$, what is the initial temperature of the silver?

$$
\begin{aligned}
q & =m \times C \times \Delta T \\
33.6 & =13 \times 0.237 \times \Delta T \\
\Delta T & =\frac{33.6}{13 \times 0.237}=10.9^{\circ} \mathrm{C} \\
T_{i} & =35.2-10.9=
\end{aligned}
$$

The following thermochemical equation is for the reaction of nitrogen (g) with oxygen (g) to form dinitrogen monoxide (g).

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=164 \mathrm{~kJ}
$$

How many grams of $\mathrm{N}_{2}(\mathrm{~g})$ would be made to react if 25.0 kJ of energy were provided? For full credit you must show work.

$$
\begin{aligned}
& 25.0 \mathrm{~kJ} \mid 2 \mathrm{~mol} \mathrm{~N}_{2} \\
& \hline 164 \mathrm{~kJ}
\end{aligned}=0.305 \mathrm{~mol} \mathrm{~N}_{2} .
$$

$8.54 \mathrm{~g} \mathrm{~N}_{2}$

0.927 grams of benzoic acid is burned completely in a bomb calorimeter. The bomb is surrounded by 1.000 kg of water. The temperature increases from 25.12 to 29.36 degrees Celsius. If the heat capacity of the bomb is $1.60 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the heat of combustion of the benzoic acid in $\mathrm{kJ} / \mathrm{gram}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Circle the best answer!
o $\quad-9.2 \mathrm{~kJ} / \mathrm{gram}$
o $21.4 \mathrm{~kJ} / \mathrm{gram}$
o $-32.7 \mathrm{~kJ} / \mathrm{gram}$
o $18.9 \mathrm{~kJ} / \mathrm{gram}$
0. $-26.5 \mathrm{~kJ} / \mathrm{gram}$

Question 14
4 Points
(1) $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
….. $\quad \Delta H^{\circ}=9.2 \mathrm{~kJ}$
(2)
$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})=2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
...... $\quad \Delta H^{0}=-164.2 \mathrm{~kJ}$
what is the standard enthalpy change for the reaction:
(3) $\quad 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad$...... $\Delta \mathrm{H}^{0}=$?

For full credit you must show work.
(2)
(1) $\times 2$

$$
\begin{aligned}
& \Delta H^{\circ}=-164.2 \\
& \Delta H^{\circ}=18.4
\end{aligned}
$$

Using standard heats of formation given, calculate the standard enthalpy change for the following reaction:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})=4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\left[\Delta H^{0}{ }_{f}: \quad \mathrm{NH}_{3}(\mathrm{~g}),-46 \mathrm{~kJ} / \mathrm{mol} \quad \mathrm{NO}(\mathrm{g}), 90 \mathrm{~kJ} / \mathrm{mol} \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{g}),-242 \mathrm{~kJ} / \mathrm{mol}\right]$
For full credit you must show work.

$$
\begin{aligned}
\Delta H_{R X N}^{0} & =4 \Delta H_{f}^{0} \mathrm{NO}(\mathrm{~g})+6 \Delta H_{f}^{0} H_{2} \mathrm{O}(g)-4 \Delta H_{f}^{0} \mathrm{NH}(g)-5 \Delta H_{f}^{0} \mathrm{O}_{2}(g) \\
& =4(90)+6(-242)-4(-46)-5(0) \\
& =360-1452+184=
\end{aligned}
$$

In the following 2-D illustrations, assume that the gas molecules are in motion and that if there is a larger box it indicates a larger volume for the container holding the molecules.

Sample B

$0 A$ and B are at the same temperature. (C) B has the highest temperature.
o A has the highest temperature.
(6) A has a smaller average kinetic energy.

Question 170.758 moles of hydrochloric acid are allowed to react with 0.416 moles of barium 8 Points hydroxide.
hydrochloric acid (aq) + barium hydroxide (aq) = barium chloride (aq) + water (I)

What is the maximum amount in grams of barium chloride that can be formed?
For full credit you must show work.
$0.379 \mathrm{~mol} \mathrm{BaCl}_{2} \left\lvert\, \frac{208.23 \mathrm{~g}}{1 \mathrm{~mol}}=78.9 \mathrm{~g}\right.$
78.9 g of barium chloride

Question 18
7 Points

For the following reaction, 5.03 grams of water are mixed with excess sulfur dioxide. The reaction yields $\mathbf{2 0 . 2}$ grams of sulfurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$.

$$
\text { sulfur dioxide }(\mathrm{g})+\text { water }(\mathrm{I})=\text { sulfurous acid }\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)(\mathrm{g})
$$

What is the percent yield for this reaction?

$$
\begin{gathered}
\mathrm{SO}_{2}(\mathrm{~g})+\underset{\mathrm{S}}{\mathrm{H} \mathrm{O}(\mathrm{l})} \mathrm{g} \mathrm{~g}
\end{gathered}=\mathrm{H}_{2} \mathrm{SO}_{3}
$$

For full credit you must show work.

$$
\begin{array}{l|l}
5.03 \mathrm{~g} & 1 \mathrm{~mol} \\
\hline & 18.02 \mathrm{~g}
\end{array}=0.279 \mathrm{md} \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{l|l}
0.279 \mathrm{~mol} \mathrm{H} \mathrm{O} & 1 \mathrm{H}_{2} \mathrm{SO}_{3} \\
1 \mathrm{H}_{2} \mathrm{O}
\end{array}=0.279 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{3}
$$

$\mathrm{H}_{2} \mathrm{SO}_{3}: 2(1.01)+32.07+3(16.00)$

$$
=82.09 \mathrm{~g} \cdot \mathrm{mof}^{-1}
$$

$$
0.279 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{3} \left\lvert\, \frac{82.09 \mathrm{~g}}{1 \mathrm{~mol}}=22.9 \mathrm{~g}\right.
$$

$$
\left.\left(\frac{20.29}{2 a .9}\right)_{g}\right) 00=88.2 \%
$$

$$
\begin{aligned}
& \underset{0.758}{2 \mathrm{HCl}(a q)}+\underset{0.416}{\mathrm{Ba}(\mathrm{OH})_{2}}=\mathrm{BaCO}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) \\
& 0.758 \text { mol } \mathrm{HCP} \left\lvert\, \frac{1 \mathrm{BOCl}_{2}}{2 \mathrm{HCl}}=0.379 \mathrm{~mol} \mathrm{BaCl} 2\right. \\
& \begin{array}{l|l|l}
0.416 \mathrm{~mol} \mathrm{Bo}_{0}(\mathrm{OH})_{2} & 1 \mathrm{BaCl} \\
\hline \mathrm{Ba}(\mathrm{OH})_{2}
\end{array}=0.416 \mathrm{~mol} \mathrm{BaCl}_{2} \\
& \mathrm{BaCl}_{2}: 131.33+2(35.45)=208.23 \mathrm{~g} \cdot \mathrm{~mol}^{-1}
\end{aligned}
$$

Question 19 7 Points

How many grams of solid calcium hydroxide are needed to exactly neutralize $\mathbf{2 8 . 2} \mathbf{~ m L}$ of a 0.714 M nitric acid solution? Assume that the volume remains constant.
For full credit you must show work.

$$
\begin{aligned}
& 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}=\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{Q}) \\
& 28.2 \mathrm{~mL} \\
& 0.714 \mathrm{M} \\
& \text { \# Mol } \mathrm{HNO}_{3}=0.0282(0.714)=0.0201 \\
& 0.0201 \mathrm{mot}^{0.2 \mathrm{HNO}_{3}} \frac{1 \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{HNO}_{3}}=0.01 \mathrm{Ol} \mathrm{mat} \mathrm{Ca}(\mathrm{OH})_{2} \\
& C_{\text {e(OH }}^{2} \text {) }: 40.08+2(16.00+1.01)=74.10 \mathrm{~g} \cdot \mathrm{md}^{-1} \\
& 0.0101 \mathrm{~mol} \mathrm{Ca}(\mathrm{ot})_{2} \left\lvert\, \begin{array}{l}
74.10 \mathrm{~g} \\
1 \mathrm{~mol}
\end{array}=0.746 \mathrm{~g}\right.
\end{aligned}
$$

0.746 g of calcium hydroxide

