Question 1 10 Points

Question 2 6 Points

Question 3 6 Points

Question 4 6 Points

Question 5 10 Points
a. Give the correct number of significant figures for each of the following:
0.038 :
2
611.0: 4
b. Report the answer for the following operation to the correct number of significant figures:

$$
23.46+1.106=24.57
$$

c. When 58.6 is divided by 1.90×10^{-2}, the answer should be reported to \qquad 3 significant digits).
d. Reported to the correct number of significant figures, how many hours are there in exactly 13 days? \square
312
e. Write the following number in non-exponential notation.

Circle those of the following (if any) that have the same number of neutrons and electrons. ${ }^{13} C$

${ }^{24} \mathrm{Mg}^{2+}$

${ }^{40} \mathrm{Ca}^{2+}$
${ }^{4} \mathrm{He}^{2+}$
A piece of copper contains 1×10^{7} atoms of copper. What is its volume in L ?
No need to do the calculation - just set up the correct dimensional analysis conversions you may not need to fill in all the boxes.

$1 \mathrm{~cm}^{3} \mathrm{Cu}=8.8 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
9.5×10^{21} atoms $\mathrm{Cu}=1 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$	

$$
1.0 \times 10^{7} \text { atoms } \times \frac{\lg \mathrm{Cu}}{9.5 \times 10^{21} \text { atoms }[u} \times \frac{1 \mathrm{~cm}^{3}[山}{8.8 \mathrm{~g} \mathrm{Cu}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~cm}^{3}}
$$

How many protons, neutrons and electrons are there in ${ }^{63}{ }_{29} \mathrm{Cu}^{2+}$

$$
\text { Protons: } 29 \quad \text { Neutrons: } 34 \quad \text { Electrons: } 27
$$

Use the Periodic Table accompanying this exam to answer the following questions:

1. $M n$ is in period \qquad and group \qquad
2. The symbol for the lightest alkaline metal.
3. Element 102 is $a(n)$
4. Group VIIIA are collectively known as the:
5. The symbol of the heaviest period 4 transition metal:

Question 6
4 Points

The element copper has an atomic weight of 63.5 amu and consists of two stable isotopes copper-63 and copper-65.

- The isotope copper-63 has an atomic mass of 62.9 amu and a percent natural abundance of 69.1%.
- The isotope copper -65 has a percent natural abundance of 30.9\%.

What is the atomic mass of copper-65?
Show Work

$$
\begin{aligned}
0.691(62.9)+0.309(x) & =63.5 \\
43.5+0.309 x & =63.5 \\
0.309 x & =63.5-43.5 \\
x & =\frac{63.5-43.5}{0.309}
\end{aligned}
$$

Question 7
2 Points

2 Points

Question 8 8 Points

Question 9 8 Points

It is a general trend that as one goes down a group the atomic radius (distance from nucleus to outermost electron) increases. From the list below circle the salt that you would predict to have the weakest columbic force of attraction?

- NaCl
- KBr
RbI
- Li

Briefly justify your choice.

FA depends on chorgeand distance Since the Magnitude of the charge is the some in old four, then the soft with the largest rectus wide lave the neokest FA... RD. I

 Give the correct name for each of the following ionic compounds.a. $\mathrm{Na}_{2} \mathrm{~S}$
Soduim sulfide
c. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
b. CrSO_{3}

Give the correct formula for each of the following ionic compounds.
a. Calcium hydroxide
b. Magnesium oxide
c. Iron(II) perchlorate
d. Ammonium phosphate

Question 14
6 Points molar mass of $60.02 \mathrm{~g} / \mathrm{mol}$. What is the formula of this compound?

Show Work

N 46.68 g	0.32 g 46.68 g $14.01 \mathrm{~g} \mathrm{md}^{-1}$
$\frac{53.32 \mathrm{~g}}{16.00 \mathrm{~g} \mathrm{~mol}}{ }^{-1}$	
3.33 mol	3.33 mol
$\frac{3.33 \mathrm{~mol}}{3.33 \mathrm{~mol}}$	$\frac{3.33 \mathrm{~mol}}{3.33 \mathrm{~mol}}$

Empirical formula: NO
NO: $14.01+16.00=30.01 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
\frac{60.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}{30.01 \mathrm{~g} \cdot \mathrm{md}^{-1}}=2
$$

$\mathrm{N}_{2} \mathrm{O}_{2}$

Question 15 6 Points

Question 16 8 Points

Balance the following chemical equations using the smallest whole number integers possible.

1. $2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\underline{3 C(s)}=\underline{4 \mathrm{Fe}(\mathrm{s})}+\underline{3 \mathrm{CO}_{2}(\mathrm{~g})}$
2. Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)+$ sodium hydroxide $=$ Sodium sulfate + water

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

If your eyes receive a signal consisting of yellow light corresponding to an energy of $2.13 \times 10^{5} \mathrm{~J}^{2} \mathrm{~mol}^{-1}$. Determine the wavelength of this light in nm ?

$$
\begin{aligned}
& E=h V \\
& 3.54 \times 10^{-19} \mathrm{~J}=6.626 \times 10^{-34} \mathrm{~J} .5(\sqrt{ })
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{3.54 \times 10^{-19} \mathrm{~J}}{6.626 \times 10^{-34} \mathrm{~J} .5} \\
& V=5.34 \times 10^{14} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\begin{gathered}
5.62 \times 10^{-7} \mathrm{~m} \\
1 \times 1 \mathrm{~nm} \\
1 \times 10^{-9} \mathrm{~m}
\end{gathered}=562 \mathrm{~nm}
$$

\square

$$
\begin{aligned}
& 2.13 \times 10^{5} \mathrm{~J} . \mathrm{mod}^{-1}|1 \mathrm{~mol}| \begin{array}{l|l}
6.023 \times 10^{2^{3}}
\end{array} \\
& =3.54 \times 10^{-19} \mathrm{~J} \\
& E=h V \\
& \lambda r=C \\
& \lambda\left(5.34 \times 10^{14} \mathrm{~s}^{-1}\right)=2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} \\
& \lambda=\frac{2.998 \times 10^{8} \mathrm{~m} .5^{-1}}{5.34 \times 10^{14} \mathrm{~s}^{-1}} \\
& =5.62 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

