Question 1 3 Points

Question 2 7 Points

Question 3 4 Points

Question 4 4 Points

If a 115 g sample of the liquid chlorodibromomethane has a volume of 47.0 mL , what is the density of the compound in g / mL ?

$$
d=\frac{\text { mass }}{V}=\frac{115 \mathrm{~g}}{47.0 \mathrm{~mL}}=
$$

$2.45 \mathrm{~g} / \mathrm{mL}$
a. When 32.979 is added to 85.71 , the result should be reported with 2 digits) after the decimal point.
b. When 11.788 and $\mathbf{3 7 . 0 9}$ are multiplied, the answer should be reported to \qquad significant digits).
c. Identify the number of significant figures in the following numbers.
19.5400 \qquad 0.00952
$1030 \quad 3$

How much will a student earn in 13 weeks if she works for 11 hours each week at a rate of $\$ 9.00$ / hour?
No need to do the calculation - just set up the correct dimensional analysis conversions you may not need to fill in all the boxes.

$$
13 \text { weeks } \times \frac{11 \text { hours }}{1 \text { Week }} \times \frac{\$ 9.00}{1 \text { hour }} \times
$$

The liquid ethyl acetate has a density of $0.900 \mathrm{~g} / \mathrm{mL}$ at $20^{\circ} \mathrm{C}$. If a sample of this liquid at $20^{\circ} \mathrm{C}$ has a volume of 1.90 L , how many grams of liquid are there in the sample?

$$
\begin{aligned}
& \frac{1.90 \mathrm{~L}}{\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=1.90 \times 10^{3} \mathrm{~mL} \quad \text { Must show work using Dimensional Analysis }} \\
& \begin{array}{l|l}
1.90 \times 10^{3} \mathrm{~mL} & 0.900 \mathrm{~g} \\
1 \mathrm{~mL}
\end{array} \\
& \\
& \hline 1.71 \times 10^{3} \mathrm{~g}
\end{aligned}
$$

How many protons, neutrons and electrons are there in ${ }^{65}{ }_{29} \mathrm{Cu}^{+}$

$$
\text { Protons: } 29 \quad \text { Neutrons: } 36 \quad \text { Electrons: } 28
$$

The element gallium has an atomic weight of 69.7 amu and consists of two stable isotopes. Ga-69 has an atomic mass of 68.9 amu and a percent natural abundance of 60.4%. Ga-71 has a percent natural abundance of 39.6%. What is the atomic mass of $\mathrm{Ga}-71$?

$$
\begin{aligned}
0.604(68.9)+0.396(x) & =69.7 \\
41.6+0.396 x & =69.7 \\
0.396 x & =28.1 \\
x & =\frac{28.1}{0.396}=
\end{aligned}
$$

Question 7 10 Points

Question 8 8 Points

Question 9 8 Points

Question 10 3 Points

Question 11 4 Points

Question 12 4 Points

Use the Periodic Table accompanying this exam to answer the following questions:

1. Al is in period \qquad and group \qquad III .
2. The symbol for the lightest alkaline earth metal.
3. Element 59 is $a(n)$
4. Group VIIA are collectively known as the:

5. Circle those (if any) of the following that are Main Group elements
V
Ni
In
Be)
U

Give the correct name for each of the following ionic compounds.
a. $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$
Magnesium nitrile
c. $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
b. $\mathrm{NH}_{4} \mathrm{Br}$
ammonium bromide
d. $\mathrm{Mg}_{3} \mathrm{~N}_{2}$
Iron(111) sulfate
Magnesium nitride

Give the correct formula for each of the following ionic compounds.
a. Sodium nitride

b. Potassium sulfite
c. Iron(II) chlorate

d. Potassium dichromate \qquad

Assuming that the distance between the atoms that form the following salts are the same order them in increasing Force of Attraction?

| Calcium sulfide | Potassium chloride | |
| :--- | :--- | :--- | | Aluminum phosphide |
| :--- |
$\frac{\text { Potassium chloride }}{\text { Smallest Force of Attraction }}$	\quad Calcium sulfide \quad	Clluminumphosphide

How many atoms of sulfur are present in 4.37 moles of $\mathrm{S}_{2} \mathrm{~F}_{10}$?
Show Work

$$
\begin{aligned}
& 4.37 \text { mol } S_{2} F_{10} \left\lvert\, \frac{25}{1 S_{2} F_{10}}=8.74 \mathrm{~mol} 5\right. \\
& \hline \frac{8.74 \mathrm{~mol} 5}{} \frac{6.023 \times 10^{23} \text { atom } 75}{1 \mathrm{~mol}}=
\end{aligned}
$$

How many moles of fluorine are present in 1.73×10^{22} molecules of $\mathrm{O}_{2} \mathrm{~F}_{2}$? Show Work

$0.0287 \mathrm{~mol}_{2} \mathrm{~F}_{2}$	2 F
	$1 \mathrm{O}_{2} \mathrm{~F}_{2}$

0.0574 mol F

Question 13 6 Points

A compound is found to contain 30.45% nitrogen and 69.55% oxygen by weight and a molecular weight of $92.02 \mathrm{~g} / \mathrm{mol}$. What is the formula of this compound?

Show Work

N	0	
30.45 g	69.55 g	$\mathrm{NO}_{2}: 14.01+2(16.00)=46.01 \mathrm{~g} \cdot \mathrm{md}^{-1}$
$\frac{30.45}{14.01}$	$\frac{69.55}{16.00}$	$\frac{92.02{\mathrm{~g} \cdot \mathrm{~mol}^{-1}}_{46.01 \mathrm{~g} \mathrm{~mol}^{-1}}^{2.173 \mathrm{~mol}}}{}$4.347 mol $\frac{2.173 \mathrm{~mol}}{2.173 \mathrm{~mol}}$ 1
$\frac{4.347 \mathrm{~mol}}{2.173 \mathrm{~mol}}$	2	
NO_{2}		

Question 14 6 Points

Question 15 4 Points

When the following molecular equations are balanced using the smallest possible integer coefficients, the values of these coefficients are:
a)
\qquad $\mathrm{NaCl}(\mathrm{s})+$ \qquad $I_{2}(s)$
b) $2 \mathrm{BrF}_{3}(g)$
c) 4 N $\mathrm{NH}_{3}(\mathrm{~g})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g})$
\qquad $\mathrm{Br}_{2}(\mathrm{~g})+3$ $F_{2}(g)$
\qquad (g) +5
 -4 $\mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

An iron nail rusts when exposed to oxygen. According to the following reaction, how many moles of oxygen gas are necessary to form 0.632 moles iron(III) oxide?

$$
\text { iron }(s)+\text { oxygen }(g)=\operatorname{iron}(\text { III }) \text { oxide }(s)
$$

$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Question 16 6 Points

Question 17
4 Points
A local AM radio station broadcasts at a frequency of 565 kHz . Calculate the wavelength in meters at which it is broadcasting.

Show Work

$$
\begin{array}{r|l}
565 \mathrm{kHz} \mid 1 \times 10^{3} \mathrm{~Hz}_{2} \\
\hline 1 \mathrm{kHz}=5.65 \times 10^{5} \mathrm{~Hz} & \begin{array}{l}
\lambda V=c \\
\lambda\left(5.65 \times 10^{5} \mathrm{~s}^{-1}\right)
\end{array}=2.998 \times 10^{7} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\lambda=\frac{2.988 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}}{5.65 \times 10^{5} \mathrm{~s}^{-1}}=
\end{array}
$$

531 m

Question 18 7 Points

a) Put the following forms of visible light in order of increasing frequency
3 Violet
1 Yellow
2 Green

1. Lowest Frequency
2. Second Highest Frequency
3. Highest Frequency
b) Put the following forms of visible light in order of increasing energy:
$\frac{2}{3}$ Green
1 Blue
1 Orange
4. Smallest Energy
5. Second Highest Energy
6. Highest Energy
531 m

The wavelength of a particular color of red light is 672 nm . What is the energy of this light in J. mol^{-1} ?

Show Work

$$
\begin{aligned}
672 \mathrm{~nm} \left\lvert\, \frac{1 \times 10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=6.72 \times 10^{-7} \mathrm{~m}\right. & \begin{aligned}
& E=h \checkmark \\
&=6.626 \times 10^{-34} \mathrm{~J} .5 \\
& \\
& \lambda v=c
\end{aligned} \\
& =2.96 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$$
6.72 \times 10^{-7} \mathrm{~m}(V)=2.98 \times 10^{8} \mathrm{~m} .5^{-1}
$$

$$
\begin{aligned}
r & =\frac{2.98 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}}{6.72 \times 10^{-7} \mathrm{~m}} & E & =2.96 \times 10^{-19} \mathrm{~J}\left(6.023 \times 10^{23} \mathrm{~mol}^{-1}\right) \\
& =4.46 \times 10^{14} \mathrm{~s}^{-1} & & =
\end{aligned}
$$

$1.78 \times 10^{5} \mathrm{~J}^{5} \mathrm{~mol}^{-1}$

