Chem 111

Question 1 8 Points	On the rough work paper provided draw the Lewis Dot Structures for the following molecules. Classify each as polar or nonpolar ?			
	a) NO3 ⁻ : NON POLAR c) CH2Cl2: POLAR			
	b) CO2: NONPOLAR d) PF2CI3: NONPOLAR			
Question 2 4 Points	In our discussion on the consequences of molecular polarity, the data shown below was used to discuss:Solubility of Some Common SubstancesCompoundSolubility in H_2O a) MembranesCompoundSolubility in H_2O b) Micelle action $g/100mL$ c) Fabric softeners O_2 4.5×10^{-3} $18^{\circ}C$ N_2 2.0×10^{-3} $18^{\circ}C$ NH_3 89.5 $0^{\circ}C$ CO_2 0.179 $18^{\circ}C$ HCl 72.1 $20^{\circ}C$			
Question 3 6 Points	 A molecule has sp3d hybridization with 3 lone pairs. a) The electron pair geometry of this molecule is: b) The molecular geometry of this molecule is: c) Molecule will have an approximate bond angle(s) of: 			
Question 4 8 Points	Depicted below is the sigma bonds benzene (C_6H_6).			
	a) The sigma bond formed between the carbon atoms is best described as being			
	between the overlap of two 5^{p^*} hybrid orbitals.			
	b) The sigma bonds formed between the hydrogen and carbon is best described as			
	being the overlap of an <u>Sp^2 hybrid orbital on each carbon with the <u>15</u> orbital</u>			
	on the hydrogen atoms.			
	c) If the pi bonds were to be depicted one would see 3 pi bond(s).			
	d) These pi bonds are formed by of overlap of the <u>2</u> P orbital on each carbon .			

Question 5 6 Points	Classify each of the compounds as <u>soluble</u> (s) or <u>not soluble</u> (ns):			
	Magnesium acetate: <u>\$</u> Sodium phosphate: <u>\$</u> Barium sulfide: <u></u>			
Question 6 4 Points	Write a balanced chemical equation for the reaction that occurs when aqueous solutions of barium iodide and iron(III) sulfate are combined:			
<u> </u>	$\frac{3 \text{ Ou } 12((uq_1) + 122(3)(4)(4))}{3 \text{ Ou } 12((4q_1) + 122(3)(4))} = \frac{3 \text{ Ou } 304(3) + 212(4q_1)}{3 \text{ Ou } 12(4q_1)}$			
Question 7 4 Points	potassium hydroxide and hydrosulfuric acid (H ₂ S) are combined.			
	$\frac{H_{2} \Im(\alpha q_{1}) + \Im OH}{1} = \frac{5^{2} + \Im H_{2} \Im(y)}{1}$			
Question 8 4 Points	Write a net ionic equation for the reaction that occurs when an aqueous solution of nitric acid is added to solid barium sulfite. $B_0 = 50_2(s) + 2_1 H^{+} - B_0^{+} + 50_2(g) + H_{20}(l)$			
Question 9 6 Points	In the laboratory a student finds that it takes 23.8 Joules to increase the temperature of 13.5 grams of solid platinum from 22.6 to 36.6 degrees Celsius. Determine the heat capacity of the platinum the student measured?			
	$q = m \times C \times \Delta T$			
	$23.8 = 13.5 \times C \times (36.6 - 22.6)$			
	$23.8 = 13.5 \text{ xc} \times 14$			
	$C = \frac{23.8}{13.5 \times 14} = 0.126 \text{ J/g.}^{\circ}C$			
	0.126 J/g°C			
Question 10 6 Points	A chunk of silver weighing 19.7 grams and originally at 97.48°C is dropped into an insulated cup containing 76.6 grams of water at 23.38°C . Assuming that all of the heat is transferred to the water, calculate the final temperature of the water.			
	Heat Capacity : H ₂ O = 4.184 J/g°C Ag = 0.237 J/g°C <u>For full credit you must show work.</u>			
	$g_{Ag} = 19.7 \times 0.237 \times \Delta T$ $\Sigma q = 0$			
	$= 4.669 (T_{P} - 97.48) \qquad 4.669 T_{P} - 455.1 + 320.5 T_{P} - 7493.2 = 0$			
	= 4.669 Tp - 455.1 $352.2 Tp = 7948.3$			
	$QH_{20} = 76.6 \times 4.184 \times \Delta T$ $Te = \frac{7948.3}{325.2} = 24.4^{\circ}C$			
	$= 320.5 (T_{\rm F} - 23.38)$			
	= 320.5 Te - 7493.2			
	<u>↓</u> ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			

Question 11	The reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and				
4 Points	bydrogen(g) proceeds as follows: CO(g) + H ₂ O(l) CO ₂ (g) + H ₂ (g)				
	When 8.57 grams of CO(g) react with sufficient $H_2O(I)$, 0.857 kJ of energy are absorbed. What is the value of AH for the reaction per mole of CO(a)?				
	Example 1 . What is the value of <u>Art</u> for the reaction per mole of CO(g) ? For full credit you must show work.				
	CO: 12.01 + 16.00				
	$= 28.01 \text{ g.mol}^{-1}$ $\Delta H = \frac{0.80 \text{ km}^2}{0.306 \text{ mol}} = 2.80 \text{ kJ. mol}^{-1}$				
	8.57 <u>g CO Imol</u>				
	= 0.306 mol CO				
	∂.8 ⊘ kJ.mol ⁻¹				
Question 12	When 0.32g of hydrazine (N_2H_4) is burned in a bomb calorimeter containing 600g of				
8 Points	water the temperature of the water increases by 1.8°C. Calculate the heat of				
	Compustion of hydrazine in J.moi Heat Capacities: $H_{1}O = 4.184 T/c^{\circ}C$ Calorimeter = 420 T/°C				
	For full credit you must show work.				
	$9_{H_{2}0} = 600 \times 4.184 \times 1.8$ N ₂ Hy: $2(14.01) + 4(1.01) = 32.06 \text{ g. mol}^{-1}$				
	= 4518 J				
	0.329 N214 Imol = 9.98×10-3mol				
	$q_{cal} = 420 \times 1.8$ 32.063				
	= 156 J				
	$q = \frac{-5274J}{-5274J} = -5.28 \times 10^{5} J.mol^{-1}$				
	9.98×10 + 9H20 + 900 =0 9.98×10 - mox				
	$Q_{RXN} + 4518 + 756 = 0$				
	$q_{av} = -5274J$				
	DKY				
	-5.28 × 10 ⁻³ J.mol ⁻¹				

Question 13	Given the standard enthalpy changes for the following two reactions:					
4 Points	(1) $Hg(I) + Cl_2(g) \longrightarrow HgCl_2(s) \dots \Delta H^\circ = -224.3 \text{ kJ}$					
	(2) Fe(s) + Cl ₂ (q) FeCl ₂ (s) $\Delta H^{\circ} = -341.8 \text{ kJ}$					
	what is the standard enthalpy change for the reaction:					
	(3) $H_0(l) + E_0(l_0(c) - H_0(l_0(c) + E_0(c)) = \Delta H_0^0 - 2$					
	For full credit you must show work.					
	(1) $H_g(R) + Cla(g) = H_gCla(s) \Delta H^0 = -224.3$					
	- (a) FeCta (s) = Fe(s) + Ctalg) $\Delta H^{\circ} = 341.8$					
	$Hg(Y) + Fe(Y_2(S)) = Hg(Y_2(S)) + Fe(S)$ $AH = 111.5$					
	117.5 kJ					
Question 14	The standard enthalpy change for the following reaction is 496 kJ at 298 K.					
4 FOINTS	$K_2O_2(s) \longrightarrow 2 K(s) + O_2(g)$ What is the standard heat of formation of $K_2O_2(s)$?					
	AHORXN = ZAHOR PROducts - ZAHOR Reactants					
	496 = 2 OH& K(S) + AH& O2(g) - AH& K2O2(S)					
	$496 = 2(0) + 0 - \Delta H_{\varphi}^{2} K_{2} O_{2}(s)$					
$\Delta H_{\mu}^{\mu} K_{2} O_{2}(s) = -496 \text{ kJ}$						
0						
Question 15 4 Points	lab, using a 125 mL volumetric flask. How much solid barium hydroxide should you add?					
	For full credit you must show work.					
	$Ba(0H)_{\lambda}$: 137.33 + 2(16.00 + 1.01)					
	= 171.35 g. mor" O.0159 mor Ba(OH)2 171.35g - 2720					
	I mal					
	$\# mol Ba(OH)_{2} = 0.121 \times 0.125$					
	$= 0.0159 \text{ mor } 120(0H)_2$					

Question 16 6 Points	For the following reaction, 9.68 grams of iron are mixed with 0.102 moles of oxygen gas. iron (s) + oxygen (g) = iron(II) oxide (s)			
	What is the maximum amount of iron(II) oxide (in moles) that can be formed? For full credit you must show work and give balanced chemical equation(s).			
	$2 Fe(s) + O_2(g) = 2 FeO(s)$			
	9.68g Fel 1 mol = 0.173 mol Fe			
	0.173 mol Fe = 0.173 mol Fe = 0.173 mol Fe = 0.102 mol O2 = 0.204 mol Fe = 0.204 mo			
	·			
	0.173 mol			
Question 17 6 Points	For the following reaction, 3.43 grams of zinc(II) oxide are mixed with excess water. The reaction yields 3.24 grams of zinc(II) hydroxide. zinc(II) oxide (s) + water (l) = zinc hydroxide (aq) What is the percent yield for this reaction? For full credit you must show work and give balanced chemical equation(s). Zn O(s) + H_2O(l) = Zn (OH)_2			
	Zn0: 65.39+16.00			
	$= 81.39 \text{ g.mol}^{-1} \qquad 0.0421 \text{ mol} (0.1) 2 99.41 \text{ g} = 4.19 \text{ g}$			
	3.43 g Zno 1 mal) 1 mal			
	$= 0.0421 \text{ mol} ZnO \qquad \left(\frac{3.24g}{4.19g}\right) 100 = 77.3\%$			
	0.0421 mol ZnO 1 Zn(0H)2			
	= 0.0421 mg Zn(0H)2			
	$Z_{n}(OH)_{\lambda}$: 65.39 + λ (16.00+1.01) = 99.41 g.ma ²⁻¹			
	77.3 %			

Do Not Write Below This						
Exam III Score						