| Question 1 3 Points | Each of the orbitals depicted has the lowest value of $n$ possible for its type. Which one has the highest $n$ value? <br> a <br> b <br> (c) |
| :---: | :---: |
| Question 2 <br> 4 Points | a) The orbital depicted on the left is what type of orbital? $\qquad$ <br> b) Based on its Radial Distribution depicted on the right you can label this orbital as? |
| Question 3 <br> 4 Points | I am an orbital belong to a family whose $m_{1}$ values are $-2,-1,0,+1,+2$ therefore $I$ am $a(n)$ d $\qquad$ type orbital. I have a grand total of 5 nodes, therefore my principal quantum number ( $n$ ) is 6 $\qquad$ . Apart from me there are a total of $\qquad$ 35 other orbital's that have this same principal quantum number. Combined we can accommodate a total of $\qquad$ electrons. |
| Question 4 6 Points | Give the complete electronic configuration for the following: <br> a. $P \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$ <br> b. $\mathrm{Al}^{3+} \quad 15^{2} 25^{2} 2 p^{6}$ |
| Question 5 <br> 4 Points | How many unpaired electrons are in the Fe atom? $\qquad$ <br> Therefore Fe is parmagnetic or diamagnetic? |
| Question 6 <br> 6 Points | Give the noble gas configuration for the following <br> a. $\mathrm{Kr} \quad\left[A_{r}\right] 4 s^{2} 3 d^{10} 4 p^{6}$ <br> c. $\mathrm{Cu} \quad\left[\mathrm{Ar}_{r}\right] 45^{1} 3 \mathrm{~d}^{10}$ <br> b. $\mathrm{Ni}^{2+} \quad\left[\mathrm{Ar}^{2}\right] 3 \mathrm{~d}^{8}$ |
| Question 7 <br> 4 Points | Using only the periodic table arrange the following elements in order of increasing atomic radius: $\quad \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{Mg}^{2+}$ |


| Question 8 6 Points | a) Using only the periodic table arrange the following elements in order of increasing atomic size: S, Ca, F, Mg $\qquad$ $\qquad$ $\qquad$ <br> smallest $\qquad$ <br> b) Which one has the greatest Electron Affinity: $\qquad$ <br> c) Which one has the smallest first ionization energy: |
| :---: | :---: |
| Question 9 3 Points | Using only the periodic table arrange the following elements in order of decreasing ionization energy: bromine, potassium, gallium $\qquad$ $\qquad$ |
| Question 10 <br> 12 Points | Draw the best Lewis Dot structure for the following |
|  | $\mathrm{BF}_{3}$ $\begin{gathered} \|\vec{F}\| \\ \underline{\underline{F}}-\bar{B}-\underline{F} \mid \end{gathered}$ <br> $\mathrm{XeF}_{2}$ $\overline{\underline{F}}-X_{e}-\bar{F} \mid$ |
| Question 11 4 Points | Draw the best Lewis Dot structure for the following molecules on the rough work paper provided and then classify each as either a free radical (yes) or not (no) <br> a) $\mathrm{NO}_{2}$ <br> YES <br> c) $\mathrm{BrO}_{2}$ <br> YES <br> b) $\mathrm{ClO}_{2}^{-}$ <br> No <br> ( $\mathrm{Cl}=$ chlorine ) <br> d) $\mathrm{ClO}_{2}$ |
| Question 12 6 Points | Draw the best Lewis Dot structure for the following organic molecules $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ |

Question 13
8 Points
(6 Points)
(2 Points)

Draw all reasonable resonance structure for $\mathrm{NO}_{3}{ }^{-}$.

Circle the best answer:
Average bond length table is on the front page of this exam.
The $\mathbf{N}$ to $\mathbf{O}$ bond length in pm is expected to be:

1. $=136$
2. $>115$
3. $=115$
4. $>136$

Question 14 Using the Average bond energy table on the front page of this exam, estimate the 4 Points enthalpy change associated with the following reaction.

$$
\begin{aligned}
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \mathrm{N} \equiv \mathrm{~N} \mid+3 \mathrm{H}-\mathrm{H}=2 \mathrm{H}-\mathrm{N}-\mathrm{H} \\
& 1
\end{aligned}
$$

$-80 \mathrm{~kJ}$
Question 15


1. List the structure (s) whose only bond angle is $180^{\circ}$
$A, B$
2. Give the electron pair geometry (egg) for:

A: $\qquad$ LINEAR

C: $\qquad$
B: $\qquad$ Trigonal bipyramid

E: $\qquad$
3. Give the molecular geometry for:

D: $\qquad$ Square planar

E: $\qquad$
G: Trigonal PyRamiD
B: $\qquad$


