Question 1 3 Points	Each of the orbitals depicted has the lowest value of n possible for its type . Which one has the highest n value?		
	* \$ \$		
	a b 🕝		
Question 2 4 Points	a) The orbital depicted on the left is what type of orbital?		
	b) Based on its Radial Distribution depicted on the right you can label this orbital as?		
Question 3 4 Points	I am an orbital belong to a family whose m_l values are -2, -1, 0, +1,+2 therefore I am		
	a(n)		
	$a_{\text{uantum number}}(\mathbf{n})$ is 6 Apart from me there are a total of 35 other		
	orbital's that have this same principal quantum number. Combined we can accommodate a		
	total of electrons.		
Question 4	Give the complete electronic configuration for the following:		
6 Points	a. P 15 ² 25 ² 29635 ² 39 ³ b. Al ³⁺ 15 ² 25 ² 29 ⁶		
Question 5	How many unpaired electrons are in the Fe atom?		
4 Points	Therefore Fe is parmagnetic or diamagnetic?		
Question 6 6 Points	Give the noble gas configuration for the following		
	a. Kr [Ar] 45 ³ 3d ¹⁰ 4p ⁶ c. Cu [Ar] 45 ³ 3d ¹⁰		
	b. Ni ²⁺ [Ar] 3d ⁸		
Question 7 4 Points	Using only the periodic table arrange the following elements in order of increasing atomic radius: Na ⁺ , F ⁻ , O ²⁻ , Mg ²⁺		
	M_g^{2+} N_a^+ $F^ O^{2-}$		
	smallest largest		

Question 16 6 Points	A resonance structure of CNO ⁻ is given below: Give the formal charge on:			
	$\begin{bmatrix} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{bmatrix} = \mathbf{O} \mathbf{i} \end{bmatrix} = \mathbf{C} - 3 \qquad \mathbf{N} - 1 \qquad \mathbf{O} - 1$			
Question 17 6 Points	What is the predicted bond angle about the following atoms? a) Nitrogen 1 b) Nitrogen 2			

Do Not Write Below This				
Exam II Score				