Chem 111	Summer 2014 Exam I Whelan	
Question 1 7 Points	 a) How many significant figures are there in each of the following numbers? 0.927790 6 0.060464 5 1.00×10³ 3 b) There are 12 eggs in a dozen. A farm produces 747 dozen eggs a month, how should the number of eggs per month be reported? 8.96×10³ c) The number 447.496 rounded to 4 significant figures is: 447.5 	
Question 2 4 Points	 a) When 17.2 is subtracted from 45.58, the result should be reported with digit(s) after the decimal point. b) When 85.49 is divided by 59.6, the answer should be reported to significant digit(s). 	
Question 3 3 Points	A copy of your chemistry textbook is found to have a volume of 2.81×10³ mL . Using unit analysis, show what the volume of this copy of your chemistry textbook is in L .	
	$1 g = 1000 mg$ $1000 mL = 1 L$ $100 cm = 1 m$ $1000 mg = 1 g$ $1 mL = 1 cm^3$ $1000 mm = 1 m$	
	No need to do the calculation - just set up the correct dimensional analysis conversions - you may not need to fill in all the boxes. 2.81x10 ³ mL 1L 1000 mL ×	
Question 4 3 Points	A 0.0635 L sample of a liquid has a mass of 87.6 g. Identify it as either nonane (density = 0.719 g/mL) or iodoheptane (density = 1.38 g/mL).	
Question 5 3 Points	The element copper has two stable isotopes, copper-63 with an atomic mass of 62.93 amu and copper-65 with an atomic mass of 64.93 amu. From the atomic weight of Cu = 63.54 one can conclude that: Copper-65 has the highest percent natural abundance both isotopes have the same percent natural abundance most copper atoms have an atomic mass of 63.54 Copper-63 has the highest percent natural abundance	
Question 6 6 Points	A certain element consists of two stable isotopes. The first has an atomic mass of 107 amu and a percent natural abundance of 51.8%. The second has an atomic mass of 109 amu and a percent natural abundance of 48.2%. What is the atomic mass of the element? 0.518(107) + 0.482(109) = 107.964 osmu	
	108 amu	

Question 7 3 Points	Decide if the following statements are true (T) or false (F): You must get all three correct to obtain credit - no partial credit awarded. a) Protons and neutrons are equal in mass, but opposite in	charge. <u>F</u>
	b) The mass of a proton is about the same as the mass o	f a neutron
	c) The electron acts as a buffer zone in the nucleus	<u> </u>
Question 8	The following questions pertain to the periodic table given at t	he front of this exam :
10100013	a. The atomic number for the element that is in group 4A a	nd period 2? <u>6</u>
	b. The atomic weight for the element in group 3A and perio	d 4?
	c. Check the elements that would be expected to have simila	ar properties?
	🗆 Pb 🖸 Cl 🗖 Be 🕤 I	n Rn
	d. What is the symbol of the alkali metal that is in period 5	? <u>Ny</u>
	e. Check any of the following that are metals ? (Z = atomic n	umber)
	🗇 Fe (Z=26) 🗖 N (Z=7) 🗖 Br (Z=35) 问 Ba (Z=56)	None of these
Question 9 3 Points	Order the following (from 1-3) in order of the greatest force (1 being the greatest and 3 the smallest)	of attraction: "
	a) K ⁺ and Cl ⁻ separated by a distance of 347 pm	2
	b) Ca^{2+} and S ²⁻ separated by a distance of 347 pm	1
	c) K^{+} and I ⁻ separated by a distance of 412 pm	· 3
Question 10	Give the correct formula for the following polyatomic ions :	
8 POINTS	a) Phosphide	
	b) Phosphate Po43-	
	c) Dihydrogen phosphate H2 PO4 ⁻	
	d) Ammonium NH4 ⁺	
Question 11	a. Name the compound with the formula MgS?	Magnesium sulfide
8 Points	b. Name the compound with the formula Fe(NO 2)2?	gron(4) Nitrite
	c. What is the formula for sodium hydrogen carbonate ?	NaHCO3
	d. What is the formula for copper(II) sulfite ?	Cu 503
Question 12	How many atoms of sulfur are present in 4.37 moles of S_2F_{10} ?	<u>Show Work</u>
4 Points	4.37 mol S2F10 25 = 8.74 mol S	
	$\int I S_{2} F_{10}$	
	$8.74 \text{ mol} = 5.26 \times 10^{-20} \text{ om}^{5} = 5.26 \times 10^{-2} \text{ of om}^{5}$	
		5.26×10 ²⁴ atoms of S

Question 13 4 Points	How many moles of fluorine are present in 1.73×10^{22} molecules of O_2F_2 ? <u>Show Work</u> 1.73×10^{22} molecules O_2F_2 I molecules $= 0.0287$ mole O_2F_2 6.023×10^{23} molecules $= 0.0287$ mole O_2F_2 0.0287 molecules $= 0.0287$ molecules
	1 OaF2
	0.0574 mol F
Question 14 6 Points	A compound is found to contain 45.71% oxygen and 54.29% fluorine by weight and a molecular weight of 70.00 g.mol ⁻¹ . What is the formula of this compound? <u>Show Work</u>
	$O = F = OF = 16.00 + 19.00 = 35g.mol^{-1}$
	$\frac{45.71 \text{ g}}{1000 \text{ g} \text{ m}^{2}} = \frac{54.29 \text{ g}}{19.00 \text{ g} \text{ m}^{2}} = \frac{70.00 \text{ g} \text{ m}^{2}}{35.00 \text{ g} \text{ m}^{2}} = 2$
	2.857 mol 2.857 mol OaFa
	2.857 mol 2.857 mol 2.857 mol
	Enpirical Formula: OF
	OzFa
Question 15 6 Points	When the following molecular equations are balanced using the smallest possible integer coefficients , the values of these coefficients are:
	a) $Mg_3N_2(s) + 6H_2O(l) \rightarrow 3Mg(OH)_2(aq) + NH_3(aq)$
	 b) When aqueous solutions of barium hydroxide, Ba(OH)₂, and nitric acid, HNO₃ are combined, barium nitrate and water are formed. Ba(OH)₂ (aq) + ¹/₂ HNO₃ (aq) → Ba(NO₃)₂ + ¹/₂ H₂O

Do Not Write Below This

Exam I Score