Question 1 7 Points
a) How many significant figures are there in each of the following numbers? $0.927790 \quad 0.060464 \quad 5 \quad 1.00 \times 10^{3} \quad 3$
b) There are 12 eggs in a dozen. A farm produces 747 dozen eggs a month, how should the number of eggs per month be reported?

a) When 17.2 is subtracted from $\mathbf{4 5 . 5 8}$, the result should be reported with digits) $\quad 1$ after the decimal point.
b) When 85.49 is divided by 59.6, the answer should be reported to significant \qquad digits).

A copy of your chemistry textbook is found to have a volume of $2.81 \times 10^{3} \mathrm{~mL}$. Using unit analysis, show what the volume of this copy of your chemistry textbook is in L .

$1 \mathrm{~g}=1000 \mathrm{mg}$	$1000 \mathrm{~mL}=1 \mathrm{~L}$	$100 \mathrm{~cm}=1 \mathrm{~m}$
$1000 \mathrm{mg}=1 \mathrm{~g}$	$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$1000 \mathrm{~mm}=1 \mathrm{~m}$

No need to do the calculation - just set up the correct dimensional analysis conversions you may not need to fill in all the boxes.

$$
2.81 \times 10^{3} \mathrm{~mL} \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times
$$

A 0.0635 L sample of a liquid has a mass of 87.6 g . Identify it as either nonane $($ density $=0.719 \mathrm{~g} / \mathrm{mL})$ or iodoheptane $($ density $=1.38 \mathrm{~g} / \mathrm{mL})$.

The element copper has two stable isotopes, copper -63 with an atomic mass of 62.93 amu and copper -65 with an atomic mass of 64.93 amu . From the atomic weight of $\mathrm{Cu}=63.54$ one can conclude that:

- copper -65 has the highest percent natural abundance
b both isotopes have the same percent natural abundance
- most copper atoms have an atomic mass of 63.54
(a) copper-63 has the highest percent natural abundance

A certain element consists of two stable isotopes.
The first has an atomic mass of 107 amu and a percent natural abundance of 51.8%. The second has an atomic mass of 109 amu and a percent natural abundance of 48.2%.
What is the atomic mass of the element?

$$
0.518(107)+0.482(109)=107.964 \mathrm{amu}
$$

Question 7 3 Points

Decide if the following statements are true (T) or false (F) :
You must get all three correct to obtain credit - no partial credit awarded.
a) Protons and neutrons are equal in mass, but opposite in charge.

Question 8
10 Points

Question 9 3 Points

Question 10 8 Points

Question 11 8 Points
b) The mass of a proton is about the same as the mass of a neutron.
c) The electron acts as a buffer zone in the nucleus

The following questions pertain to the periodic table given at the front of this exam:
a. The atomic number for the element that is in group 4A and period 2? 6
b. The atomic weight for the element in group $3 A$ and period 4 ?
69.72
c. Check the elements that would be expected to have similar properties?
ㅁ Pb
(a) Cl
ㅁ Be
(G) I

- Rn
d. What is the symbol of the alkali metal that is in period 5?

e. Check any of the following that are metals? ($Z=$ atomic number)
(1) $\mathrm{Fe}(\mathrm{Z}=26)$
$\square N_{(z=7)}$
$\square \mathrm{Br}$
(Z=35)

$\mathrm{Ba}(\mathrm{Z}=56)$
None of these

Order the following (from 1-3) in order of the greatest force of attraction: (1 being the greatest and 3 the smallest)
a) K^{+}and Cl^{-}separated by a distance of 347 pm
b) Ca^{2+} and S^{2-} separated by a distance of 347 pm

c) K^{+}and I^{-}separated by a distance of 412 pm
 - 3

Give the correct formula for the following polyatomic ions:
a) Phosphide
b) Phosphate
c) Dihydrogen phosphate
d) Ammonium

a. Name the compound with the formula MgS?
b. Name the compound with the formula $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$?
c. What is the formula for sodium hydrogen carbonate?

Magnesium Sulfide
$\frac{\text { Iron (II) Nitrite }}{\text { NaHCO }}$
CuSO

Question 12
How many atoms of sulfur are present in 4.37 moles of $\mathrm{S}_{2} \mathrm{~F}_{10}$?

Show Work

$$
\begin{aligned}
& 4.37 \mathrm{~mol} S_{2} F_{10} \left\lvert\, \frac{25}{1 S_{2} F_{10}}=8.74 \mathrm{mols}\right. \\
& 8.74 \mathrm{~mol} S \\
& \hline \frac{6.023 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}=5.26 \times 10^{24} \text { atoms } 5
\end{aligned}
$$

Question 13 How many moles of fluorine are present in 1.73×10^{22} molecules of $O_{2} F_{2}$? Show Work
4 Points

$$
1.73 \times 10^{22} \text { molecules } \mathrm{O}_{2} \mathrm{~F}_{2} \left\lvert\, \frac{1 \text { mol }}{16.023 \times 10^{23} \text { molecules }}=0.0287 \mathrm{~mol} \mathrm{O}_{2} \mathrm{~F}_{2}\right.
$$

$0.0287 \mathrm{~mol} \mathrm{O}_{2} \mathrm{~F}_{2} \mid 2 \mathrm{~F}, 1 \mathrm{O}_{2} \mathrm{~F}_{2} \mathrm{~F}=0.0574 \mathrm{~mol} \mathrm{~F}$
0.0574 mol F

Question 14 A compound is found to contain 45.71% oxygen and 54.29% fluorine by weight and a 6 Points molecular weight of $70.00 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. What is the formula of this compound?

Show Work

Question 15 6 Points

When the following molecular equations are balanced using the smallest possible integer coefficients, the values of these coefficients are:
a) $_\mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \rightarrow \quad \underline{3} \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq})$
b) When aqueous solutions of barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, and nitric acid, HNO_{3} are combined, barium nitrate and water are formed.

Question 16
4 Points

An iron nail rusts when exposed to oxygen. According to the following reaction, how many moles of oxygen gas are necessary to form 0.632 moles iron(III) oxide?

Question 17

6 Points

Question 18
4 Points

a) Put the following forms of electromagnetic radiation in order of increasing frequency:

1. Lowest Frequency
2. Second Highest Frequency
3. Highest Frequency
b) Put the following forms of electromagnetic radiation in order of increasing energy:

$\frac{1}{3}$ AM	1. Smallest Energy
$\frac{2}{2}$ FM	2. Second Highest Energy
	3. Highest Energy

A local AM radio station broadcasts at a frequency of 636 kHz . Calculate the wavelength in meters at which it is broadcasting.

$$
\begin{array}{l|l}
636 \mathrm{kHz}_{2} & 1000 \mathrm{H}_{2} \\
\hline & 1 \mathrm{KHz}
\end{array}=6.36 \times 10^{5} \mathrm{~s}^{-1}
$$

$\lambda V=c$

$$
\lambda\left(6.36 \times 10^{5} \mathrm{~s}^{-1}\right)=2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}
$$

$$
\lambda=\frac{2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}}{6.36 \times 10^{5} \mathrm{~s}^{-1}}=471 \mathrm{~m}
$$

$$
\begin{aligned}
& \text { iron (} s \text {) + oxygen (} \mathrm{g} \text {) = iron(III) oxide (} \mathrm{s} \text {) } \\
& 4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}=2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
& 0.632 \mathrm{md} \mathrm{Fe}_{2} \mathrm{O}_{3} \left\lvert\, 3 \mathrm{O}_{2} \begin{array}{l}
2 \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{array}=0.948 \mathrm{~mol} \mathrm{O}_{2}\right.
\end{aligned}
$$

Question 19 The wavelength of a particular color of red light is 529 nm . What is the energy of this 8 Points light in J. mol^{-1} ?

Show Work

$$
529 \mathrm{~nm} \left\lvert\, \frac{1 \times 10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=5.29 \times 10^{-7} \mathrm{~m}\right.
$$

$E=h J$
$=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}\left(5.67 \times 10^{14} \mathrm{~s}^{-1}\right)$
$=3.76 \times 10^{-19} \mathrm{~J}$
$\lambda \checkmark=c$

$$
5.29 \times 10^{-7} \mathrm{~m}(\mathrm{v})=2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1}
$$

$$
v=\frac{2.998 \times 10^{8} \mathrm{~m} .5^{-1}}{5.29 \times 10^{-7} \mathrm{~m}}
$$

$$
=5.67 \times 10^{14} \mathrm{~s}^{-1}
$$

