Question 1
8 Points

Question 2

 4 PointsClassify each of the following molecules as polar or nonpolar?

Non polar

Polar

Nom polar

Polar

In our discussion on the consequences of molecular polarity, the diagram depicted below was used to discuss:

a) Membranes
b) Micelle action
c) Fabric softeners
d) Like dissolves like
e) Detergents

Question 3 9 Points

Question 4 8 Points

A molecule has $s p^{3} d^{2}$ hybridization with 2 lone pairs.
a) The electron pair geometry of this molecule is:
b) The molecular geometry of this molecule is:
c) Molecule will have an approximate bond angles) of:

octahedron

Depicted below are the sigma bonds in formaldehyde $\left(\mathrm{H}_{2} \mathrm{CO}\right)$.

$A X_{3} E_{0} \quad A X E_{2}$
a) The sigma bond formed between the carbon and oxygen atoms is best described as being between the overlap of $a(n) S p^{2}$ hybrid orbital on C with $a(n) S p^{2}$ hybrid orbital on O.
b) The sigma bonds formed between the hydrogen and carbon is best described as being the overlap of an Sp hybrid orbital on each carbon with the 15 orbital on the hydrogen atoms.
c) The pi bond formed between carbon and oxygen is the result of the overlap by of a $2 p$ orbital on carbon and oxygen.
d) The lone pairs on the oxygen atom are found on \qquad hybrid orbitals

Question 5 6 Points

Question 6 4 Points

Question 7 4 Points

Question 8

 4 PointsQuestion 9 7 Points

Classify each of the compounds as soluble (s) or not soluble (ns):
a) Calcium iodide:
b) Magnesium hydroxide:

$\frac{S}{N S}$
NS

Write a balanced chemical equation for the reaction that occurs when aqueous solutions of lead(II) iodide and iron(III) bromide are combined:
\qquad
$3 \mathrm{~Pb}_{5} I_{2}(a q)+2 \mathrm{Fe}_{\mathrm{e}} \mathrm{r}_{3}(\mathrm{aq})$ $=$ \qquad $3 \mathrm{P}_{3} \mathrm{Br}_{2}(\mathrm{~s})+2 \mathrm{FeI}_{3}($ qq)
Write a net ionic equation for the reaction that occurs when aqueous solutions of potassium hydroxide and nitrous acid $\left(\mathrm{HNO}_{2}\right)$ are combined.
$\mathrm{OH}^{-}+\mathrm{HNO}_{2}(\mathrm{qq})$
$=\mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Write a net ionic equation for the reaction that occurs when an aqueous solution of hydriodic acid is added to solid barium sulfite.

$$
2 \mathrm{H}^{\dagger}+\mathrm{BaSO}_{3}(\mathrm{~s})=\mathrm{Ba}^{2+}+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{SO}_{2}(\mathrm{q})
$$

A 41.2 g sample of copper at $99.8^{\circ} \mathrm{C}$ is dropped into a beaker containing 153 g of water at $18.5^{\circ} \mathrm{C}$. What is the final temperature when thermal equilibrium is reached? Assume the beaker neither absorbs nor loses heat.

Heat Capacities:
$q_{H_{2} O}=153(4.184) \Delta T$

$$
\begin{aligned}
q_{C u} & =41.2(0.385) \Delta T \\
& =15.862\left(T_{f}-T_{i}\right) \\
& =15.862\left(T_{f}-99.8\right) \\
& =15.862 T_{f}-1583.0
\end{aligned}
$$

$$
C u=0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
$$

For full credit you must show work.

$$
\begin{aligned}
q_{H_{2} O} & =153(4.184) \Delta T \\
& =640.152\left(T_{f}-T_{i}\right) \\
& =640.152\left(T_{f}-18.5\right) \\
& =640.152 T_{f}-11,842.8
\end{aligned}
$$

$$
\begin{aligned}
& \sum q_{s}=0 \\
& 640.152 T_{f}-11,842.8+15.862 T_{p}-1583.0=0 \\
& 656.014 T_{f}=13,425.8 \\
& T_{f}=\frac{13,425.8}{656.014}=20.5^{\circ} \mathrm{C}
\end{aligned}
$$

Question 12 6 Points	Using standard heats of formation, given on the first page of this exam, calculate the standard enthalpy change for the following reaction. $\begin{aligned} & \mathrm{H}_{2} \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\ & \text { RYN }=\sum \Delta H_{f}^{0}\left(\mathrm{P}_{\text {Roducts }}\right)-\Delta H_{f}^{0}(\text { Reactants }) \\ &=\Delta H_{f}^{0} \mathrm{CO}_{2}(\mathrm{~g})+\Delta H_{f}^{0} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})-\Delta H_{f}^{0} \mathrm{H}_{2} \mathrm{CO}(\mathrm{~g})-\Delta H_{f}^{0} \mathrm{O}_{2}(\mathrm{~g}) \\ &=-393.5-285.8+116.0-0 \end{aligned}$
	$-563.3 \mathrm{~kJ}$
Question 13 6 Points	How many milliliters of an aqueous solution of 0.204 M magnesium iodide is needed to obtain 13.7 grams of the salt? For full credit you must show work. $\begin{array}{ll} \begin{array}{ll} M g I_{2} \\ 24.31+2(126.90) & \text { Mol }=M \times V(L) \\ =278.11 \mathrm{~g} . \mathrm{mol}^{-1} & 0.0493=0.204 \times V(\mathrm{~L}) \\ 13.7 \mathrm{~g} \mathrm{MgI} \left\lvert\, \frac{1 \mathrm{~mol}}{278.11 g}\right. & V(\mathrm{~L})=\frac{0.0493}{0.204}=0.241 \mathrm{~L} \\ =0.0493 \mathrm{~mol} & \end{array} \end{array}$ \square 241 mL
Question 14 6 Points	For the following reaction, 0.126 moles of propane $\left(C_{3} H_{8}\right)$ are mixed with 0.222 moles of oxygen gas. $\text { propane }(\mathrm{g})\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)+\text { oxygen }(\mathrm{g}) \longrightarrow \text { carbon dioxide }(\mathrm{g})+\text { water }(\mathrm{g})$ What is the maximum amount of carbon dioxide that can be produced? For full credit you must show work and give balanced chemical equation(s). $\begin{gathered} \mathrm{C}_{3} \mathrm{Hg}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})=3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\ \begin{array}{l\|l} 0.126 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} & 3 \mathrm{CO}_{2} \\ & 1 \mathrm{C}_{3} \mathrm{H}_{8} \end{array}=0.378 \mathrm{~mol} \mathrm{CO}_{2} \\ 0.222 \mathrm{~mol} \mathrm{O}_{2} \\ \hline \end{gathered}$

Question 15
7 Points

For the following reaction, 3.43 grams of oxygen gas are mixed with excess butane $\left(C_{4} H_{10}\right)$. The reaction yields 1.97 grams of carbon dioxide.

$$
\text { butane }(\mathrm{g})\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)+\text { oxygen }(\mathrm{g}) \longrightarrow \text { carbon dioxide }(\mathrm{g})+\text { water }(\mathrm{g})
$$

What is the percent yield of carbon dioxide?
For full credit you must show work and give balanced chemical equations).

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g})=8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\left.\begin{array}{l|l|l}
3.42 \mathrm{~g} \mathrm{O}_{2} & 1 \mathrm{md} \\
\hline & 32.00 \mathrm{~g}
\end{array}=0.107 \mathrm{md} \mathrm{O} \quad 0.107 \mathrm{~mol} \mathrm{O}_{2} \right\rvert\, 8 \mathrm{CO}_{2} \mathrm{I} \quad \begin{aligned}
& 13 \mathrm{O}_{2}
\end{aligned}=0.0658 \mathrm{md} \mathrm{CO} 2
$$

$\mathrm{CO}_{2}: 12.01+2(16.00)=44.01 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

$$
\begin{array}{c|c}
0.0658 \mathrm{~mol} \mathrm{co}_{2} & 44.0 \mathrm{lg} \\
\hline 1 \mathrm{~mol}
\end{array}=2.89 \mathrm{~g}
$$

$$
\%=\left(\frac{1.97}{2.89}\right) 100
$$

Question 16 7 Points

What volume in mL of a 0.178 M hydrochloric acid solution is required to neutralize 24.7 mL of a 0.158 M calcium hydroxide solution?

For full credit you must show work and give balanced chemical equations).

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl}=\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \text { \# mol } \mathrm{Ca}(\mathrm{OH})_{2}=0.158 \times 0.0247=3.90 \times 10^{-3} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
& 3.90 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \frac{2 \mathrm{HCl}}{1 \mathrm{Ca}(\mathrm{OH})_{2}}=7.81 \times 10^{-3} \mathrm{~mol} \mathrm{HCl} \\
& \text { \# mol HCl }=\mathrm{MVV}(\mathrm{~L}) \\
& 7.81 \times 10^{-3}=0.178 \times V(\mathrm{~L}) \\
& V(\mathrm{~L})=\frac{7.81 \times 10^{-3}}{0.178}=0.0439 \mathrm{~L}
\end{aligned}
$$

