Chem 111	S	ummer 201	.5	Exam I		Whelan	
Question 1 4 Points	A general chemist basement of a fri student tried the The student meas Then dropped the displaced 17.8 ml This metal is mos	ry student fo end's house. T following exp ured the mass metal into a r of water. t likely :	und a chunk o f o figure out w eriment. s of the meta neasuring cup d = <u>188.89</u> <u>17.8 m</u>	metal in the hat it was, the hat it was, the hat it was, the hat it be 188.8 g. and found that it <u>= 10.6g.m²⁻¹</u>	Densities of So Substance Water Aluminum Chromium Nickel Copper Silver Lead Mercury Gold Tungsten Platinum	Substances Density (g/mL) 1.00 2.72 7.25 8.91 8.94 10.50 11.34 13.60 19.28 19.38 21.46	
Question 2 10 Points	 a. Give the correct number of significant figures for each of the following: 180: 2.30×10⁻³: 3 b. Report the answer for the following operation to the correct number of significant figures: 23.46 - 1.1 = 22.4 c. When 58.6 is divided by 77.31, the answer should be reported to 3 significant digit(s). d. How many hours are there in exactly 26 days? 624 						
Question 3 6 Points	A piece of copper contains 6.7×10⁸ atoms . What is the volume of the sample in units of liters .						
	$1 \text{ cm}^3 \text{ Cu} = 8.8 \text{ g C}$ $1\text{L} = 1000 \text{ cm}^3$	Ц	9.5x10 ²¹ at 1 mL = 1 cn	coms Cu = 1 g Cu	1 Kg = 1	1000 g	
	No need to do th you may not need 6.7 × 10 ⁸ ato	te calculation to fill in all oms × 1 9.5	- just set up t the boxes. <u>9</u> X10 ^{X1} atoms *	the correct diment	isional analysis x <u>1L</u> 100	conversions - D cm ³	
Question 4 4 Points	The element copper and copper-65 with can conclude that both is copper most copper	er has two sto th an atomic n sotopes have t -65 has the k copper atoms k -63 has the k	ible isotopes, o nass of 64.93 The same percen nighest percen nave an atomic nighest percen	copper-63 with an amu. From the at- ent natural abundar t natural abundar mass of 63.54 t natural abundar	n atomic mass omic weight of ance ice	of 62.93 amu [:] Cu = 63.54 one	
Question 5 4 Points	Circle those of th electrons.	e following (if	any) that hav	e the same numb	er of protons,	neutrons and	
	¹³ C	¹Н	²⁴ Mg	⁹ Be	⁴⁰ Ca ²⁺	⁴He	

Question 6 4 Points	A certain element consists of two stable isotopes: Exact Mass (amu) Abundance (%) #1 112.9043 4.28 #2 114.9041 95.72 What is the average atomic mass of this element? <u>Give answer to 6 significant figures</u> 0.0428 (112.9043) + 0.9572 (114.9041) = 114.818 (5086) amul						
	<u>114.819</u> amu						
Question 7 6 Points	Decide if the following statements are true (T) or false (F):						
	a) Protons and neutrons are approximately equal in mass .						
	b) The charge on a proton is the same as the charge of an electron .						
	c) The electron acts as a buffer zone in the nucleus						
Question 8 10 Points	Use the Periodic Table accompanying this exam to answer the following questions:						
	a) <u>Formula</u> for the only diatomic in Period 3						
	b) <u>Symbol</u> for the lightest Alkali Metal.						
	c) <u>Symbol</u> for transition metal in Group IB, Period 4.						
	d) Plutonium (Pu) is a: (metal, nonmetal, metalloid)						
	e) Group IIA are collectively known as the: (Ukalme Zarth Metals						
Question 9	Columbs Law gives that the Force of Attraction (FA): $FA \propto q_a q_b/r^2$ where q_a is the charge						
4 Points	on a while $\mathbf{q}_{\mathbf{b}}$ is the charge on b and r is the distance between them.						
	1. Which of the following have the greatest force of attraction:						
	a. Mg ²⁺ and O ²⁻ separated by a distance of 419 pm b. Mn ²⁺ and Se ²⁻ separated by a distance of 295 pm						
	2. Which of the following have the greatest force of attraction: $A = Mo^{2^{+}}$ and $O^{2^{-}}$ separated by a distance of 631 pm						
	b. K ⁺ and Cl ⁻ separated by a distance of 226 pm						
Question 10	Give the correct name for the following compounds :						
8 Points	a) Na2S <u>Sodium sulfide</u>						
	b) Mg(NO2)2 Magnesium NITRITE						
	c) Cu ₃ (PO ₄) ₂ <u>Copper(II) phosphale</u>						
	d) NH4Br annould Spomide						

Question 11	Give the correct for	mula for the follow	ing compounds:	
8 Points	a) Calcium hydr o	oxide	(OH)2	
	b) Aluminum chl	orate	$\underline{O}\left((2O_3)_3\right)$	
	c) Chromium(II)	sulfide	CrS	
	d) Potassium sul	fite	K2503	
Question 12	How many moles of a	Sr are there in a sa	mple that contains 1.10×10 ²² st	trontium atoms?
3 Points	. 0 X 0 ^{2°}	atoms Sr	I mor	<u>Show Work</u>
		6.023Y	10 ²³ atoms	
				-1
			<u></u> .	83×10 mol of Sr
Question 13	How many moles of	Cu 2 SO 4 are present	in 1.39 grams of this compound	d?
5 Points	C. C.			<u>Show Work</u>
		ulu m	1.39g Eug504 1 mo	
	2(63.55) + 32.01	F 4(10.00)	223.17	lg _
	= 223.11g.mor			0
				2
			6.23	10^{-2} mol Cu ₂ SO ₄
Question 14	A hydrocarbon is a c	ompound composed	purely of hydrogen and carbon.	If a particular
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula	compound composed d to be composed of of this hydrocarbo	purely of hydrogen and carbon. 89.93% C and has a molar mass	If a particular s of 120.21 g/mol.
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula	compound composed d to be composed of of this hydrocarbo H	purely of hydrogen and carbon. 89.93% C and has a molar mas: n? C3H4	If a particular s of 120.21 g/mol.
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula C gg 93.	compound composed d to be composed of of this hydrocarbo H 10.070	purely of hydrogen and carbon. 89.93% C and has a molar mas: n? C3H4	If a particular s of 120.21 g/mol.
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula 69,939 89,939	ompound composed d to be composed of of this hydrocarbo H 10.07g	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4 : 3(12.01) +44	If a particular s of 120.21 g/mol.
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula \$9,93g \$9,93g [m]	compound composed d to be composed of of this hydrocarbo H 10.01g 10.01g 10.01g	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: 3(12.01) +44 = 40.07 g.m	If a particular s of 120.21 g/mol. (1.01)
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula 89.93g 89.93g 10.01g	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 10.07g 10.07g 10.07g	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: 3(12.01) + 44 = 40.07 g.m	If a particular s of 120.21 g/mol. (I.01)
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula 89.93g 89.93g 112.01g 7488 md	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 10.07g 1.01g 9.970 mol	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4 : 3(12.01) + 44 = 40.07 g.m	If a particular s of 120.21 g/mol. (1.01)
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula 89.93g 89.93g 1 mf 12.01g 7 488 mol 7.448 mol	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 10.07g 10.07g 10.07g 10.07g 10.07g 10.07g 1.01g 1.01g 9.970 mol	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: 3(12.01) + 44 = 40.07 g.m 120.21 g.ma ²⁻¹	If a particular s of 120.21 g/mol. (1.01) od -1
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula 89.93g 89.93g 10.01g 7488 mol 7.448 mol 7.448 mol	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 10.07g 1.01g 9.970 mol 7.448 mol 1.229	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: 3(12.01) + 44 = 40.07 g.m 120.21 g.ma ²⁻¹ 40.07 g.ma ²⁻¹	If a particular s of 120.21 g/mol. (1.01) -1 = 3
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 10.07g 1.01g 9.970 mol 7.448 mol 1.332 2.664	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: $3(12.01) + 44$ = 40.07 g.m 120.21 g.m 120	If a particular s of 120.21 g/mol. (1.01) -1 = 3
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 1.01g 9.970 mol 7.448 mol 1.332 2.664 2.996	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: $3(12.01) + 44$ = 40.07 g.m 120.21 g.mo ²⁻¹ 40.07 g.ma ²⁻¹	If a particular s of 120.21 g/mol. (1.01) -1 = 3
Question 14 6 Points	A hydrocarbon is a c hydrocarbon is found What is the formula 89.93g 89.93g 10.01g 7488 md 7.448 mol 1.000 X2 2.000 X3 3.000	compound composed d to be composed of of this hydrocarbo H 10.07g 10.07g 1.01g 9.970 mol 9.970 mol 1.332 2.664 3.996	purely of hydrogen and carbon. 89.93% C and has a molar mass n? C3H4 C3H4: $3(12.01) + 44$ = 40.07 g.m 120.21 g.ma ⁻¹ 40.07 g.ma ⁻¹	If a particular s of 120.21 g/mol. (1.01) = 3

There is one more question on the next page

Do Not Write Below This

