Chem 112	Fall 2019	Exam III	Whelan			
SID	Last Key	First	Answer			
Question 1	n 1 The substance hydrocyanic acid (HCN) is a weak acid (Ka = 4.90×10 ⁻¹⁰). What is the pH of a 0.322 M aqueous solution of sodium cyanide?					
9 Points						
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x = √0 = 2	0.322 (2.04×10-5) .56 × 10-3 = [0H-]			
	$\frac{\mathbf{E} \mathbf{0.322 \cdot x}}{K_{CN^{-}}} = \frac{1 \times 10^{-14}}{11.40 \times 10^{-10}} = 2.04 \times 10^{-10}$	5 POH = -	- log ₁₀ (2.56×10 ⁻³) 2.59			
	0.322 7 100(2.04×10-5)	рН =	14 - 2.59			
	.: 0.322-x % 0.322		рН = <mark>11.41</mark>			
Question 2	ether the resulting solution					
3 roints	 will be acidic, basic, or neutral: 1. When 35 mL of 0.40 M HClO and 35 sodium hydroxide are combined: 	mL of 0:40 M	B			
	 When 35 mL of .0.400 M nitric acid a sodium nitrite are combined: 	and 35 mL of 0.40	ом 🔒			
	 When 50 mL of 0.20 M ammonium io potassium hydroxide are combined: 	dide and 50 mL of	F 0.20 M B			
Question 3 9 Points	The following questions pertain to a buffer s 0.131 M in NH4Br.	solution that is 0 .	102 M in NH3 (ammonia) and Kb(NH3) = 1.8×10 ⁻⁵ @25°C			
	1. Write the net ionic equation for the r $\frac{NH_3(aq_1)}{H_3O^+} + H_3O^+ = -\frac{1}{2}$	removal of added	H3O* to this buffer: NH4 ⁺			
	2. What is the buffer capacity for addition of strong base : 0.131					
	3. The choice of NH₄⁺ suggests that the	e desired pH is clo	ose to: 9.26			
Question 4 9 Points	Identify buffer solutions from the following <i>Choose all that apply.</i>	list.				
	• 0.30M HNO2(aq) + 0.25M KNO2(aq)					
	0.40M Ammonium chloride + 0.30M A	mmonia				
	0.30M HCl(aq) + 0.30M KF(aq)					
	□ 0.20M HNO3(aq) + 0.15M NaNO2(aq)					

Question 5	Rank the following salts from 1-3 in order of increasing solubility with 1 being the most				
7 1 01110	soluble and 3 being the least soluble.				
	• Agen $K_{sp} = 1.2 \times 10^{-11}$				
	• Car_2 $K_{sp} = 5.9 \times 10$				
Question 6 9 Points	The maximum amount of chromium(III) hydroxide that will dissolve in a 0.255M chromium(III) nitrate solution is: Chromium(III) hydroxide: Ksp = 6.70×10 ⁻³¹				
	$K_{SP} = [Cr^{3+}][OH^{-}]^{3}$				
	$6.70 \times 10^{-31} = 0.255 (35)^3$				
	$\frac{Cr(0H)_3(s)+H_20}{Cr} = \frac{Cr}{1} + \frac{3}{3} \frac{OH}{OH} = 27s^3(0.255) = 6.70 \times 10^{-31}$				
	$\frac{150me}{1000} = 1000000000000000000000000000000000000$				
	$\frac{c}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{1}{2}$ $\frac{1}$				
	$\frac{1}{5} = \frac{1}{7} = \frac{1}$				
	0.255 +5 % 0.255 <u>4.60x1D "</u> M				
Question 7 10 Points (4+6)	Write a balanced net ionic equation to show why the solubility of $Mn(OH)_2(s)$ increases in the presence of a strong acid and calculate the equilibrium constant for the reaction of this sparingly soluble salt with acid. Must show work when calculating K - Ksp $Mn(OH)_2 = 4.6 \times 10^{-14}$ $Mn(OH)_2(s) + 2H_30^+ = M_0^{2+} + 4H_2O(s)$				
	$M_m(OH)_{2}(s) \rightleftharpoons M_m^{2+} + 20H^- K = 4.6 \times 10^{-14}$				
	$\begin{array}{rcl} M_{m}(0H)_{2}(s) & \rightleftharpoons & M_{m}^{2+} + 20H^{-} & K = 4.6 \times 10^{-14} \\ \underline{2 H_{3}0^{+} + 20H^{-}} & \rightleftharpoons & H_{2}D(9) & K = (1 \times 10^{-14})^{-2} \\ \hline & M_{0}(0H_{0})_{0} + 2 H_{0}0^{+} & = M_{0}^{2+} + H_{0}D(9) & K = K_{0}(K_{0})^{-2} \end{array}$				
	$\begin{array}{rcl} M_{m}(0H)_{2}(s) & \rightleftharpoons & M_{m}^{2+} + 20H^{-} & K = 4.6 \times 10^{-14} \\ \underline{2 H_{3}0^{+} + 20H^{-}} & \rightleftharpoons & H_{2}D(P) & K = (1 \times 10^{-14})^{-2} \\ \hline & M_{n}(0H_{2})_{s} + 2H_{3}0^{+} & = M_{n}^{2+} + 4H_{2}O(P) & K = K_{sp}(K_{W})^{-2} \\ \hline & H_{n}(0H_{2})_{s} + 2H_{3}0^{+} & = M_{n}^{2+} + 4H_{2}O(P) & K = K_{sp}(K_{W})^{-2} \end{array}$				
	$\begin{array}{rcl} M_{m}(0H)_{2}(s) & \rightleftharpoons & M_{m}^{2+} + 20H^{-} \\ \underline{2H_{3}0^{+} + 20H^{-}} & \rightleftharpoons & H_{2}D(P) \\ M_{n}(0H_{2})s + 2H_{3}0^{+} & = M_{n}^{2+} + 4H_{2}O(P) \\ H & = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \end{array}$ $\begin{array}{rcl} K & = & \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ K & = & \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \end{array}$				
Question 8 12 Points	$\begin{array}{rcl} Mm (0H)_{2}(s) & \rightleftharpoons & Mm^{2+} + 20H^{-} \\ \underline{2 H_{3}0^{+} + 20H^{-}} & \rightleftharpoons & H_{2}0(P) \\ \hline Mn (0H_{2})s + 2H_{3}0^{+} & = Mn^{2+} + 4H_{2}0(P) \\ \hline Mn (0H_{2})s + 2H_{3}0^{+} & = Mn^{2+} + 4H_{2}0(P) \\ \hline & K = (1 \times 10^{-14})^{-2} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \hline & K = \frac{4.6 \times 10^{-14}}{(1 \times 10^$				
Question 8 12 Points	$\begin{array}{c} Mm (0H)_{2}(s) \rightleftharpoons mn^{2+} + 20H^{-} \\ \underline{2H_{3}0^{+} + 20H^{-}}_{Mn} \rightleftharpoons H_{2}0(g) \\ \underline{2H_{3}0^{+} + 20H^{-}}_{Mn} \rightleftharpoons H_{2}0(g) \\ \underline{Mn (0H_{3})s + 2H_{3}0^{+}}_{Mn^{2+} + 4H_{2}0(g)} \\ K = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ K = 4.6 \times$				
Question 8 12 Points	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Question 8 12 Points Question 9 6 Points	$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$				
Question 8 12 Points Question 9 6 Points	$\begin{array}{rcl} & & & & & & & & & & & & & & & & & & &$				
Question 8 12 Points Question 9 6 Points	$\begin{array}{c} M_{m}(0H)_{a}(s) \rightleftharpoons M_{m}^{a+} + 20H^{-} \rightleftharpoons M_{m}^{a+} + 20H^{-} \qquad K = 4.6 \times 10^{-14} \\ \underline{2H_{3}0^{+} + 20H^{-}} \rightleftharpoons H_{20}(9) \qquad K = 4.6 \times 10^{-14} \\ \underline{K} = (1\times10^{-14})^{-2} \qquad K = (1\times10^{-14})^{-2} \\ K = \frac{4.6\times10^{-14}}{(1\times10^{-14})^{2}} \qquad K = \frac{4.6\times10^{-14}}{(1\times10^{-14})^{2}} \\ \end{array}$ Rank the following substances from 1-4 in order of increasing entropy with 1 being the lowest entropy and 4 being the highest entropy. • CH_{3}CHO(g) $\frac{3}{4}$ • CH_{3}OH(g) $\frac{2}{1}$ Consider the reaction: $2H_{2}O_{2}(1) \longrightarrow 2H_{2}O(1) + O_{2}(g)$ Using standard absolute entropies at 298K, calculate the entropy change for the system when 2.38 moles of $H_{2}O_{2}(1)$: 109.6 $O_{2}(g)$: 205.1 $H_{2}O(1)$: 69.9 ΔS_{RXN}^{-} = $2S_{1}^{0}H_{2}O(9) + S_{1}^{0}O_{2}(g) - 2S_{1}^{0}H_{2}O_{2}(9)$				
Question 8 12 Points Question 9 6 Points	$\begin{array}{c c} M_{m} (\text{oH})_{a}(\text{s}) \rightleftharpoons M_{m}^{a+} + 20\text{H} & \text{K} = 4.6 \times 10^{-14} \\ \underline{2 \text{ H}_{30}^{+} + 20\text{H}^{-}} \rightleftharpoons \text{H}_{20}(\text{P}) & \text{K} = 4.6 \times 10^{-14} \\ \underline{1 \times 10^{-14}}^{2} \rightleftharpoons \text{H}_{20}(\text{P}) & \text{K} = 4.6 \times 10^{-14} \\ \underline{1 \times 10^{-14}}^{2} \rightleftharpoons \text{H}_{20}(\text{P}) & \text{K} = (1 \times 10^{-14})^{-2} \\ \text{K} = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} & \text{K} = \frac{4.6 \times 10^{-14}}{(1 \times 10^{-14})^{2}} \\ \text{Rank the following substances from 1-4 in order of increasing entropy with 1 being the lowest entropy and 4 being the highest entropy.} \\ \bullet CH_{3}CHO(g) & \underline{3} & \bullet CH_{3}OH(g) & \underline{2} \\ \bullet (CH_{3})_{2}CO(g) & \underline{4} & \bullet CH_{3}OH(g) & \underline{2} \\ \bullet (CH_{3})_{2}CO(g) & \underline{4} & \bullet CH_{3}OH(g) & \underline{2} \\ \text{Consider the reaction:} & 2 \text{ H}_{2}O_{2}(1) \longrightarrow 2 \text{ H}_{2}O(1) + O_{2}(g) \\ \text{Using standard absolute entropies at 298K, calculate the entropy change for the system when 2.38 moles of H_{2}O_{2}(1) \text{ react at standard conditions?} \\ \text{S}^{\circ} (J/K.mol): & \text{H}_{2}O_{2}(1): 109.6 & O_{2}(g): 205.1 & \text{H}_{2}O(1): 69.9 \\ \text{AS}^{\circ}_{RXN} = 2 \text{S}^{\circ}_{1} \text{H}_{2}O(g) + \text{S}^{\circ}_{0} \text{A}(g) - 2 \text{S}^{\circ}_{1} \text{H}_{2}O_{2}(g) \\ = 125.7 \text{ J}^{\circ}_{1} \text{K} \\ \end{array}$				

Question 10	Consider the reaction: 2 CO(g) +	2 NO(g) -	—► 2 CO₂(g) + N₂(g)	
6 Points	for which $\Delta H^{\circ} = -746.6 \text{ kJ}$ and $\Delta S^{\circ} = -198 \text{ J/K}$ at 298 K.			
	Calculate the entropy change of the UNIVERSE when 1.57 moles of NO(g) react			
	under standard conditions at 298 K.		$\Delta S^{\circ}_{Universe} = \frac{1811}{3}$	
	• Is this reaction reactant or product	favored?	PRODUCT	
Question 11 6 Points	Without doing any calculations, match the following thermodynamic prope appropriate numerical value given on the right for the following endothermi $2 H_2O(g) + 2 Cl_2(g) \longrightarrow 4 HCl(g) + O_2(g)$			
	• ΔS_{rxn} • ΔG_{rxn} • ΔG_{rxn}	1. 2. 3.	> 0 < 0 = 0	
	• ΔSuniverse	5 .	<pre>< 0 at low T, > 0 at high T</pre>	
Question 12	For the reaction	1	· • •	
6 Points	Fe(s) + 2HCl(aq) = FeCl ₂ (s) + H ₂ (g)	∆H° =	-7.4 kJ and ∆S° = 107.9 J/K	
	a) The standard free energy change for the reaction of 1.63 moles of Fe(s) at 291 K, 1 atm would be kJ.			
			<u> </u>	
	b) The reaction is (reactant , product) favored under these conditions. PRODUCT			
	Assume that ΔH° and ΔS° are independent of temperature.			

•

<u>Do Not Write Below This Line</u>

Exam III Score	