Chem 112	Fall	2019	Exam II	Whelan
SID	Last	Кеу	First An	swer
Question 1 8 Points	Consider the following r A reaction mixture was CO(g), and 4.35x10 ⁻² m Indicate True (<u>T</u>) or Fa a) In order to react b) In order to react c) In order to react d) Q is greater tha	eaction where K _c = 77 CO(g) + Cl ₂ (g) found to contain 0.12 oles of Cl ₂ (g), in a 1.0 Ise (<u>F</u>) for each of the h equilibrium COCl ₂ (g) h equilibrium K _c must c h equilibrium CO(g) mu n K.	7.52 at 600 K: CoCl ₂ (g) 8 moles of COCl ₂ (g) 0 Liter container. 5 following: must be produced. lecrease. st be produced.	, 5.22×10 ⁻² moles of
Question 2 5 Points	Consider the following e Circle the statement t	quilibrium: NH hat is correct with re	₃(g) + HI(g) ← NH spect to Kc and Kp f	4I(s) or this equilibrium.
	$\Box \mathbf{K}_{c} = \mathbf{K}_{p}$	K _c > K _p	•	$\Box K_c < K_p$
Question 3 8 Points	The equilibrium constan Calculate K_c and K_p at the formula of the formula	t, K _c , for the following 2 NOBr(g) this temperature for t NO(g) + $\frac{1}{2}$ Br ₂ (g $(10^{-3})^{1/2}$ K _c = <u>18.1</u>	reaction is 3.05×10^{10} $2 \text{ NO}(g) + \text{ Br}_2(g)$ he following reaction MOBr(g) Kp = Kc (= 18.1	r ³ at 262K. at 262K: R = 0.0821 L.atm.mol ⁻¹ .K ² RT) ^{ΔΠ} (0.0821 X 262) ^{-1/2} <u>18.1</u> 0821 X 262 K _p = <u>3.90</u>
Question 4 9 Points	Consider the following s 298 K. 2 N If the TEMPERATURE The value of Kc [Br2]	ystem at equilibrium v NO(g) + Br₂(g)	yhere ΔH° = -16.1 k NOBr(g) tem is suddenly incre The value of Q	J, and Kc = 1.54x10 ² , a ased: Is greater than Ka Is less than Kc Is equal to Kc
Question 5 4 Points	HCN is a weak acid - HCN(aq) + H₂O(I) Addition of OH ⁻ to this a) Increase	Remains the same)	K _c = 4.0x10 ⁻¹⁰ @ the [HCN] to Remain unchanged	9 298K
	(b) Decrease	d)	Impossible to dete	rmine

Question 6 8 Points	6 Consider the following system at equilibrium where $K_c = 6.50 \times 10^{-3}$ and $\Delta H^\circ = 16.1$ k at 298 K. 2 NOBr(g) \rightleftharpoons 2 NO(g) + Br ₂ (g)				
	The production of NO(g) is favored by: Indicate True (T) or False (F) for each of the following:				
	a) Decreasing the temperature c) Adding Br ₂ .				
	b) Decreasing the volume.	Image: Solution of the pressure (by changing the volume).Image: Solution of the volume).			
Question 7 8 Points	The equilibrium constant, K_p , for the following reaction is 0.110 at 298 K. NH ₄ HS(s) \implies NH ₃ (g) + H ₂ S(g) Tf ΛH° for this reaction is 92 7 kT what is the value of K_p at 408 K2				
	Must Show Work for Full Credit: R = 8				
	$\int_{\Pi} \frac{K_{R}}{K_{1}} = -\frac{\Delta H^{o}}{R} \left(\frac{1}{T_{R}} - \frac{1}{T_{1}} \right)$	$\int_{\Pi} \frac{K_2}{0.110} = -\frac{92,700}{8.314} \left(\frac{1}{408} - \frac{1}{298} \right)$			
	K1 = 0.110 K2=?	$f_{n}N_{2} - f_{n}O.110 = -11,149.8(-9.047 \times 10^{-1})$			
	ΔH° = 92,700 J	$S_{00} K_{0} + 2.21 = 10.09$			
		$J_m K_2 = 10.09 - 2.21$ = 7.88			
		$J_m K_2 = 10.09 - 2.21$ = 7.88 $K_F = \frac{2.65 \times 10^3}{10^3}$			
Question 8 9 Points	a) What is the conjugate acid o	$J_m K_2 = 10.09 - 2.21$ = 7.88 $\kappa_{\rm p} = \frac{2.65 \times 10^3}{10^3}$			
Question 8 9 Points	 a) What is the conjugate acid of b) What is the conjugate base of 	$\int M X_{2} = 10.09 - 2.21$ = 7.88 $K_{p} = \frac{2.65 \times 10^{3}}{100}$ f CO ₃ ²⁻ f HCO ₃ ⁻			
Question 8 9 Points	 a) What is the conjugate acid of b) What is the conjugate base of c) Write a net ionic equation to base in water. 	$J_m K_2 = I0.09 - 2.2I$ = 7.88 $K_p = \frac{2.65 \times 10^3}{100}$ f CO_3^{2-} HCO3 f HCO3 ⁻ CO3 ²⁻ show that methylamine behaves as a Brønsted-Lowry			
Question 8 9 Points	 a) What is the conjugate acid of b) What is the conjugate base of c) Write a net ionic equation to base in water. CH₃NH₂(aq) + H₂O(l) 	$J_m K_2 = I0.09 - 2.2I$ = 7.88 $K_p = \frac{2.65 \times 10^3}{100}$ f CO_3^{2-} $\frac{HCO_3}{CO_3^{2-}}$ f HCO_3^{-} CO_3^{2-} show that methylamine behaves as a Brønsted-Lowry $R_p = \frac{CH_3 NH_3^{+}}{CH_3 + CH^{-}}$			
Question 8 9 Points	 a) What is the conjugate acid or b) What is the conjugate base of c) Write a net ionic equation to base in water. CH₃NH₂(aq) + H₂O(l) Indicate whether each of the followineutral(<u>N</u>) solution when dissolved in 	$I_{m} K_{2} = I_{0} O_{9} - 2.2I$ $= 7.88$ $K_{p} = \frac{2.65 \times 10^{3}}{100}$ $f CO_{3}^{2-} \qquad HCO_{3}^{2-}$ $f HCO_{3}^{-} \qquad CO_{3}^{2-}$ show that methylamine behaves as a Brønsted-Lowry $R_{p} = \frac{CH_{3} NH_{3}^{+}}{0} + \frac{OH^{-}}{0}$ ing compounds will give an acidic(<u>A</u>), basic(<u>B</u>) or water.			
Question 8 9 Points	 a) What is the conjugate acid or b) What is the conjugate base of c) Write a net ionic equation to base in water. CH₃NH₂(aq) + H₂O(l) Indicate whether each of the followin neutral(<u>N</u>) solution when dissolved in ammonium sulfate: 	$I_m K_2 = I0.09 - 2.2I$ $= 7.88$ $K_p = 2.65 \times 10^3$ $f CO_3^{2-} \qquad HCO_3^{-}$ $f HCO_3^{-} \qquad CO_3^{2-}$ show that methylamine behaves as a Brønsted-Lowry $ing compounds will give an acidic(\underline{A}), basic(\underline{B}) or water.$ $Iithium nitrite: \underline{B}$			

Question 10	Calculate the pH of a 0.369 M aqueous solution of CH ₃ COOH, $K_{\alpha} = 1.8 \times 10^{-5} @25^{\circ}C$.			
9 Points	For Full Credit must fill in the ICE Table and Show Work.			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$x = \sqrt{0.369(1.8\times10^{-5})}$ = 2.57×10 ⁻³ = [H ₃ 0 ⁺] pH = - $\log_{10}(2.57\times10^{-3})$		
Question 11	HA = CH_3COOH A = CH_3COO	pH = $\frac{2.59}{0.000}$		
9 Points	Calculate the pri of a 0.401 M aqueous sol	Credit must fill in the ICE Table and Show Work.		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$x = \sqrt{0.401(6.30\times10^{-10})}$ = 1.59×10 ⁻⁵ = [0H ⁻] pOH = - $\log_{10}(1.59\times10^{-5})$ = 4.80 pH = 14 - 4.80		
	B = C9H7N BH ⁺ = C9H7NH ⁺	рН = <u>9.20</u>		
Question 12	What is the pOH of an aqueous solution of 0 .1	102 M hydrobromic acid?		
U I UIII3	$HBr(aq) + H2O(1) = H_3O^{\dagger} + Br^{-}$ $O.102M$			
	$pH = -log_{10}(0.102) = 0.991$			
	POH = 14 - 0.991	pOH = <u>13.01</u>		

Question 13 9 Points	In the laboratory, a general chemistry student measured the pH of a 0.312 M aqueous solution of nitrous acid to be 1.854 . What is the Ka for HNO ₂ ? For <u>Full Credit</u> must fill in the <u>ICE Table</u> and <u>Show Work</u> .			
	HNO2 + H20= H30+ + NO2	Ka = [H30+][N02-]		
	0.312 0 0 0	CHNO2]		
	c -X X X	<u> </u>		
	E 0.312-X V X	0.312-2		
	pH = -log ₁₀ [H ₃ 0 ⁺] -log ₁₀ [H ₃ 0 ⁺] = 1.854 log ₁₀ [H ₃ 0 ⁺] = -1.854 [H ₃ 0 ⁺] = 0.0139 = x	2 <u>(0.0139)</u> 2 0.312-0.0139		
		Ka = <u>6.48×10</u> -4		

•

Do Not Write Below This Line

Exam II Score	