

Question 4 8 Points	An aqueous solution is 7.02 % by mass hydrochloric acid , HCl. What is the mole fraction of hydrochloric acid in the solution? Must Show Work for Full Credit: Molar Masses, HCl = 36.5g.mol ⁻¹ , H ₂ O = 18.02g.mol				
	assume 100g :- 7.02g HCP 92.98g H2O				
	$\frac{7.02 \text{ HCP} 1 \text{ mol}}{36.5 \text{ g}} = 0.192 \text{ mol} \qquad \frac{92.98 \text{ g} \text{ H2O} 1 \text{ mol}}{18.02 \text{ g}} = 5.16 \text{ mol}$				
	$\chi = \frac{0.192}{0.192 + 5.16}$				
	<u>3.59 × 10-2</u>				
Question 5 8 Points	Match the following aqueous solutions with the appropriate letter from the column on — the right. Assume complete dissociation of electrolytes.				
	$ C 0.21 \text{ m } CrSO_4 \dot{c} = 2 A. Lowest freezing point $				
	D_{10} 0.16 m CuCl $c = 2$ B. Second lowest freezing point				
	$A_{\text{O}} 0.19 \text{ m } Cu(\text{NO}_3)_2 C. \text{ Third lowest freezing point}$				
	0.44 m Glucose (nonelectrolyte) ^{C=} D. Highest freezing point				
Question 6 6 Points	The Vapor Pressure of 4 substances was measured at 25°C and they were found to be 143.0 mmHg, 67.9 mm Hg, 151.7 mmHg, 514.4 mmHg The four substances measured are given below. Which one of the four would you anticipate having the Vapor Pressure of 151.7 mm Hg?				
	$\Box CH_3OH \qquad \qquad \bigcirc C_6H_{14}$				
	\Box C_5H_{12} \Box CH_3CH_2OH				
Question 7 7 Points	The vapor pressure of water (H ₂ O) is 23.8 mm Hg at 25°C . What is the vapor pressure of a solution consisting of 8.55 mol of water and 0.265 mol of a nonvolatile nonelectrolyte ? Must Show Work for Full Credit				
	Psolution =)(solvent × Psolvent				
	X solvent = $\frac{8.55}{8.55 + 0.265} = 0.97$				
	Psolution = 0.97 (23.8)				
	mm Hg				

•

Question 8 10 Points	The gas phase decomposition of hydrogen peroxide at 400°C is second order in H_2O_2 . $H_2O_2(g) = H_2O(g) + \frac{1}{2}O_2(g)$ In one experiment, when the initial concentration of H_2O_2 was 5.50×10 ⁻² M, the concentration of H_2O_2 dropped to 1.29×10 ⁻² M after 59.6 seconds had passed. Base on this data, the rate constant (k) for the reaction is:						
	Must Show Work for Full						
	$\frac{1}{[A]_{t}} = \frac{1}{[L]_{t}}$	$\overline{AJ_0}$ + kt		1 1.29 × 10 ⁻²	$= \frac{1}{5.50 \times 10^{-2}} + 5$	9.6 k	
	$[A]_{t} = 1.29 \times 10^{-2}$ $[A]_{0} = 5.50 \times 10^{-2}$			59.6 k	$= \frac{1}{1.29 \times 10^{2}} - \frac{1}{1.29 \times 10^{2}}$ = 59.3	1 5.50×10-2	
	t = 59	1.6		59 6 h	= 59.3		
	. k = ?)			59.3 59.6		
					0.995	5 M ⁻¹ .s ⁻¹	
Question 9 12 Points	9 The following initial rate data are for the oxidation of nitrogen monoxide by oxyge 25°C:						
			2 NO	+ O ₂ = 2 NO	2	•	
		Experiment	[NO] ₀ M	[O ₂] ₀ M	Initial Rate, M.s ⁻¹		
		1	9.10x10 ⁻³	5.61×10 ⁻⁴	4.20×10 ⁻⁴		
		2	1.82×10 ⁻²		1.68×10 ⁻³		
		3	9.10x10 ⁻³	1.12x10 ⁻³	8.38×10 ⁻⁴		
	a) What is the order of the reaction with respect to NO?						
	b) What is the order of the reaction with respect to O_2 ?						
	c) What is the rate constant (k) ? 9.04×10^{3}						
Question 10 8 Points	The following plots pertain to the reaction $A = B$ in which the concentration of A was monitored over 8 minutes						
	Slope = -0.102 Slope = -0.424 FIRST ORDER Time Time Slope = 3.472 Time						
	From these plots the it can be determined that the Rate = 0.424 [A]					•	

•

Question 11 10 Points	Chromium-51 is a radioisotope that is used to assess the lifetime of red blood cells The half-life of chromium-51 is 27.7 days. If you begin with 41.7 mg of this isotope, what mass remains after 77.6 days have passed? Since the decomposition is a radioactive decay reaction, it is first order.					
	Must Show Work for Full Credit $t \sqrt{2} = \frac{\ln 2}{h}$ $\int_{n} \frac{\left[A\right]_{t}}{\left[A\right]_{0}} = -kt$ $\int_{n} \frac{\left[A\right]_{t}}{\left[A\right]_{0}} = -kt$ $\begin{bmatrix}A]_{0} = 41.7 \qquad t = 77.6 \text{ days}$ $\begin{bmatrix}A]_{1} = ? \qquad h = 2.50 \times 10^{-2}$ $\int_{n} \frac{\int_{n} 2}{27.7} = 2.50 \times 10^{-2}$					
	$\int_{n} \frac{\mathbf{LA} \mathbf{l}_{t}}{(41.7)} = -2.50 \times 10^{-2} (77.6)$ $\int_{n} \mathbf{LA} \mathbf{l}_{t} - \mathbf{l}_{m} \mathbf{A} \mathbf{l}_{.7} = -1.94$ $\int_{m} \mathbf{LA} \mathbf{l}_{t} - 3.73 = -1.94$ $\int_{m} \mathbf{LA} \mathbf{l}_{t} = 3.73 - 1.94 = 1.79$					
Question 12 9 Points	In a study of the rearrangement of ammonium cyanate to urea in aqueous solution at 50°C NH4NCO(aq) = (NH2)2CO(aq) the concentration of NH4NCO was followed as a function of time. It was found that a graph of 1/[NH4NCO] versus time in minutes gave a straight line with a slope of 1.47×10 ⁻² M ⁻¹ min ⁻¹ and a y-intercept of 2.65 M ⁻¹ . Based on this plot the:					
	a) the reaction is <u>2</u> order in NH4NCO b) and the rate constant for the reaction is: <u>1.47×10</u> <u>M⁻¹mim⁻¹ (units)</u>					

Do Not Write Below This Line

Exam I Score	