Question 1 (4 points)	\mathcal{A} quarter is found to have a mass of 5.34 grams. Ulsing unit analysis, show what the mass of the quarter is in milligrams. $\begin{array}{c\|c} 5.34 \mathrm{~g} & 1000 \mathrm{mg} \\ \hline & 1 \mathrm{~g} \end{array}=5,340 \mathrm{mg}$
Question 2 (12 Points)	$\mathcal{H o w}$ many protons, neutrons and electrons are there in an atom of the isotopes represented by: 1. ${ }^{107}{ }_{47} \mathcal{A g} \quad$ Protons: 47 $\mathcal{N e}$ utrons: 60 Electrons: 47 2. ${ }^{16} \mathrm{O}^{2} \quad$ Protons: 8 $\mathcal{N e}$ utrons: 8 Electrons: 10
Question 3 (12 Points)	1. An ion from a given element has 13 protons and 10 electrons. What is the charge on the ion? $+3$ What is the name of the element? What is the symbolfor the ion? 2. For the element potassium: What is the charge on the ion expected to form? +1 What is the symbolfor the ion? \mathcal{H} ow many electrons are present in the ion?
Question 4 (12 Points)	1. What is the name for $\mathrm{SO}_{4}{ }^{2 \cdot}$? The Sulfate ion What is the formula for the phosphate ion? $\mathrm{PO}_{4}{ }^{3 .}$ What is the formula for the chlorate ion? $\mathrm{ClO}_{3}{ }^{-}$ 2. What is the formula for the ammonium ion? $\mathcal{N} \mathcal{H}_{4}{ }^{+}$ What is the name for $O \mathcal{H}$? The Hydroxide ion What is the formula for the hydrogen sulfate ion? $\mathcal{H S} O_{4}$

Question 5 (12 Points)	1. The compound CaBr_{2} is an ionic compound. What are the ions of which it is composed? Ca^{2+} 2. What is the formula of the compound formed between the ions \mathcal{F} and $\mathcal{F e}^{2+}$? $\mathcal{F e}_{2} \mathcal{F}_{2}$ 3. What is the name of the compound with the formula $\mathrm{Ca}\left(\mathrm{CN}_{2}\right)_{2}$? Calcium cyanide 4. What is the name of the compound with the formula $\mathfrak{N}\left(\operatorname{HHCO}_{3}\right.$? Sodium fydrogen carbonate 5. What is the name of the compound with the formula KO \mathcal{H} ? Potassium fydroxide 6. What is the formula for Garium nitrate? $\mathcal{B a}\left(\mathcal{N}\left(\mathrm{O}_{3}\right)_{2}\right.$ 7. What is the formula for potassium carbonate ? $\mathcal{K}_{2} \mathrm{CO}_{3}$ 8. What is the formulafor calcium phosphate? $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$ 9. What is the formula for xenon trioxide? XeO_{3} 10. What is the formula for nitrogen dioxide? $\mathfrak{N} \mathrm{O}_{2}$ 11. What is the formula for sulfur tetrafluoride? $S \mathcal{F}_{4}$
Question 6 (9 Points)	1. How many GRAMS of sulfur are present in 4.34 moles of SO_{2} ? 2. How many $\mathcal{M O L E S}$ of oxygen are present in 3.06 grams of SO_{2} ?

Name:	ID:
Question 7 (14 Points)	1. Howmany $\mathcal{G R A M S}$ of phosphorus are present in 1.86 grams of $\mathcal{P C l}_{5}$? 2. How many $\mathcal{G R A M S}$ of $\mathcal{P C l}_{5}$ can be produced from 2.29 grams of chlorine?
Question 8 (6 Points)	The percent 6 y weight of carbon in $\mathcal{C}_{3} \mathcal{H}_{6} O_{3}$ Molar Mass $\mathrm{C}_{3} \mathcal{H}_{6} \mathrm{O}_{3}=3(12.01)+6(1.01)+3(16.00)=90.09 \mathrm{~g}$ Carbon Content $=3(12.01)=36.03 \mathrm{~g}$ \% by weight $=(36.03 / 90.09) \times 100=39.99 \%$

Question 9 (10 Points)	1. A compound is found to contain 30.45% nitrogen and 69.55% oxygen by we ight. Determine the empiricalformula for this compound. Assume 100 g Sample $\quad 30.45 g \mathcal{N} \quad 69.55 g$ O Divide by 2.173 Empirical Formula: $\mathcal{N} \mathrm{NO}_{2}$ 2. If the molecular weight for this compound was found to be $46.01 \mathrm{~g} / \mathrm{mol}$. The molecular formula for this compound is. Molar Mass of Empirical Formula: $14.01+2(16.00)=46.01 \mathrm{~g}$ Molecular Formula $=$ Empiric al Formula $=\mathfrak{N} \mathrm{NO}_{2}$
Question 10 (9 Points)	When the following molecular equations are balanced using the smallest possible integer coefficients, the values of these coefficients are: 1. $\mathrm{Ca}(\mathrm{OH})_{2}(a q)+2 \mathcal{H C l}(a q) \longrightarrow \operatorname{CaCl}_{2}(a q)+2 \mathcal{H}_{2} \mathrm{O}$ 2. $2 \mathfrak{N O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathfrak{N O}_{2}(\mathrm{~g})$ 3. $2 \mathcal{F e}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{s}) \longrightarrow 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$

