S
S
S
S

Question 5	1. The compound CaBr₂ is an ionic compound. What are the ions of which it is				
(12 Points)	composed? Ca ²⁺ Br ⁻				
	2. What is the formula of the compound formed between the ions ${\bf F}^{\text{-}}$ and ${\bf Fe^{2^{+}}}$? ${\bf FeF_2}$				
	3. What is the name of the compound with the formula Ca(CN)₂? Calcium cyanide				
Do Not Write Here	4. What is the name of the compound with the formula NaHCO ₃ ? Sodium hydrogen carbonate				
	5. What is the name of the compound with the formula KOH ? Potassium hydroxide				
	6. What is the formula for barium nitrate ? Ba(NO ₃) ₂				
	7. What is the formula for potassium carbonate ? K ₂ CO ₃				
	8. What is the formula for calcium phosphate ? Ca ₃ (PO ₄) ₂				
	9. What is the formula for xenon trioxide ? XeO ₃				
	10. What is the formula for nitrogen dioxide ? NO ₂				
	11. What is the formula for sulfur tetrafluoride ? SF ₄				
Question 6	1. How many GRAMS of sulfur are present in 4.34 moles of SO ₂ ?				
Do Not Write Here	$\frac{4.34 \text{ mol SO}_2}{1 \text{ mol SO}_2} = 4.34 \text{ mol S}$				
	$ \begin{array}{c ccccc} & 4.34 \text{ mol S} & 32.07 \text{g S} \\ \hline & 1 \text{ mol S} & = 139.18 \text{g S} \end{array} $				
	2. How many MOLES of oxygen are present in 3.06 grams of SO₂ ?				
	$\frac{3.06g SO_2}{64.07g SO_2} = 0.0477 mol SO_2$				
	$ \begin{array}{c c} 0.0477 \text{ mol } SO_2 & 2 \text{ mol } O \\ \hline & 1 \text{ mol } SO_2 \end{array} = 0.0955 \text{ mol } O $				

Question 7 (14 Points)

1. How many **GRAMS** of **phosphorus** are present in **1.86** grams of **PCI**₅?

$$\frac{1.86g \, PCI_5}{208.22g \, PCI_5} = 0.00893 \, mol \, PCI_5$$

$$\frac{0.00893 \text{ mol PCI}_{5}}{1 \text{ mol PCI}_{5}} = 0.00893 \text{ mol P}$$

Do Not Write Hen

2. How many GRAMS of PCI₅ can be produced from 2.29 grams of chlorine?

Question 8 (6 Points)

The percent by weight of carbon in $C_3H_6O_3$

Do Not

Molar Mass $C_3H_6O_3 = 3(12.01) + 6(1.01) + 3(16.00) = 90.09g$

Carbon Content = 3(12.01) = 36.03g

% by weight = (36.03/90.09) x 100 = 39.99%

Question 9 (10 Points)	1. A compound is found to contain 30.45 % nitrogen and 69.55 % oxygen by weight. Determine the empirical formula for this compound.			
	Assume 100g Sample 30).45g N	69.55g O	
d)	30.45g N	1 mol N 14.01g N	- = 2.173 mol N	
	69.55g O	1 mol O 16.00g O	- = 4.347 mol O	
	N		0	
e o	2.173 i	mol	4.347 mol	
Do Not Write Here	Divide by 2.173 1.000		2.000	
	 Empirical Formula: NO₂ If the molecular weight for this compound was found to be 46.01 g/mol. The molecular formula for this compound is. Molar Mass of Empirical Formula: 14.01 + 2(16.00) = 46.01g Molecular Formula = Empirical Formula = NO₂ 			
Question 10 (9 Points)	When the following molecular equations are balanced using the smallest possible integer coefficients, the values of these coefficients are:			
Not Here	1. $Ca(OH)_2(aq) + 2 HCI (aq)$ — 2. $2 NO(g) + O_2(g) \longrightarrow 2 NO_2(g)$		2 H ₂ O (I)	
Do Tit	- 20,	<i>.</i> .		

3. $2 \operatorname{Fe_2O_3}(s) + 3 \operatorname{C}(s) \longrightarrow 4 \operatorname{Fe}(s) + 3 \operatorname{CO_2}(g)$