

140.12	$\begin{gathered} \hline \mathrm{Pr} \\ 59 \\ 140.9 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Nd} \\ 60 \\ 14424 \end{gathered}$ 144.24	$\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \\ \hline \end{array}$	Sm 62 150.3	Eu			Dy			9	70	$\begin{gathered} \mathrm{Lu} \\ 71 \\ 74.97 \end{gathered}$
Th	P	U	Np	P	A	C	B	Cf	Es	Fm	Na	N	Lr
90	91	92	93	94	95	96	97	98	99	10	101	102	103
20	1.	8,	37.05	240)	,	247)	(248)	(251)	52.0	257.10	257)	259.1	62.11

Information You May Need:

Last:
First:

Question 1
4 Points
0

Question 2 8 Points

Question 3 4 Point

Question 4 12 Points

Question 5

 6 PointsQuestion 6 9 Points

A field is found to have an area of $1,000 \mathrm{~m}^{2}$.
Using unit analysis, show what the area of the field is in cm^{2}.

$$
\begin{array}{l|l|l}
1,000 \mathrm{~m}^{2} & 100 \mathrm{~m} & 100 \mathrm{~m} \\
\hline & 1 \mathrm{~cm} & 1 \mathrm{~cm}
\end{array}=1 \times 10^{7} \mathrm{~cm}^{2}
$$

A nucleus has 34 protons and 43 neutrons 77 How many electrons does Fill in the three blanks to complete the Se this atom possess? 34 atomic symbol. 34

What is the charge (both magnitude and sign) of the ions formed from the following atoms?

1. Potassium +1
2. Aluminum +3
3. $\mathrm{Se}-2$
4. $\mathrm{Be}+2$

Give the correct chemical formula and charge for the following polyatomic ions.

1. Cyanide CN^{-}
2. Chlorate $\mathrm{ClO}_{3}{ }^{-}$
3. Nitrate $\mathrm{NO}_{3}{ }^{-}$
4. Sulfite $\mathrm{SO}_{3}{ }^{2-}$
5. Carbonate $\mathrm{CO}_{3}{ }^{2-}$
6. Ammonium $\mathrm{NH}_{4}{ }^{+}$

Use the numbering scheme on the left to give the best

1. Alkali Metal classifications for the following elements.
2. Transition Metal (i.e. $\mathrm{Na}, 1$)
3. Noble Gas
4. Non Metal
5. Halide
6. Alkali Earth Metal
a. Fe 2
d. $S \quad 4$
7. Metalloid
b. Xe 3
e. $K \quad 1$
c. Be 6
f. F 5

Give the correct chemical name for the following ionic compounds.

1. $\mathrm{CuNO}_{2} \operatorname{Copper}(\mathrm{I})$ nitrite
2. $\mathrm{NH}_{4} \mathrm{OH}$ Ammonium hydroxide
3. $\mathrm{Al}_{2} \mathrm{O}_{3}$ Aluminum oxide

Question 7 8 Points

Question 8 4 Points

Question 9 9 Points

Question 10 (6 Points)

Question 11 (6 Points)

Give the correct name or formula for the following covalent compounds.

1. SO_{3}
2. Dinitrogen tetraoxide
3. Boron trifluoride
4. $C F_{4}$

Sulfur trioxide
$\mathrm{N}_{2} \mathrm{O}_{4}$
BF_{3}
Carbon tetrafluoride

The balanced chemical equation for the reaction between glucose and oxygen is

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

We can interpret this to mean that 6 moles of oxygen and 1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ react to produce 6 moles of water and 6 moles of carbon dioxide

When the following chemical equations are balanced using the smallest possible integer coefficients, the values of these coefficients are:

1. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})=2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{s})$
3. $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

What is the percent by weight of carbon in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?

$$
\begin{array}{ll}
\text { Molar Mass: } & 6(12.01)+12(1.01)+6(16.00)=180.18 \mathrm{~g} \\
\text { Carbon: } & 6(12.01)=72.06 \mathrm{~g} \\
\% \mathrm{C}=(72.06 / 180.18) \times 100=39.99 \%
\end{array}
$$

Ans: 39.99\%

How many GRAMS of iron(II) chloride are present in 0.48 moles of this compound?

Molar Mass $\mathrm{FeCl}_{2}=55.85+2(35.45)=126.75$

$$
\begin{array}{l|l}
0.48 \mathrm{~mol} \mathrm{FeCl}_{2} & 126.75 \mathrm{~g} \\
\hline & 1 \mathrm{~mol}
\end{array}=60.98 \mathrm{~g} \mathrm{FeCl}_{2}
$$

SID: \square Last: First:

Question 12 (10 Points)

How many GRAMS of nitrogen are present in $\mathbf{7 2 . 6}$ grams of dinitrogen tetrafluoride? Molar Mass $\mathrm{N}_{2} \mathrm{~F}_{4}=2(14.01)+4(19.00)=104.02 \mathrm{~g}$

$72.6 \mathrm{~g} \mathrm{~N}_{2} \mathrm{~F}_{4}$	1 mol
	104.02 g

$0.698 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{~F}_{4}$	2 N
	$1 \mathrm{~N}_{2} \mathrm{~F}_{4}$

1.396 mol N	14.01 g
	1 mol

Ans: 19.56 g

Question 13 (6 Points)

A compound is found to contain 10.85% silicon, 27.40% chlorine, and 61.75 bromine \% by weight. What is the empirical formula for this compound?

$$
\begin{array}{ccc}
\mathrm{Si} & \mathrm{Cl} & \mathrm{Br} \\
& & \\
10.85 \% & 27.40 \% & 61.75 \% \\
10.85 \mathrm{~g} & 27.40 \mathrm{~g} & 61.75 \mathrm{~g} \\
0.386 \mathrm{~mol} & 0.773 \mathrm{~mol} & 0.773 \mathrm{~mol} \\
\frac{0.386 \mathrm{~mol}}{0.386 \mathrm{~mol}} & \frac{0.773 \mathrm{~mol}}{0.386 \mathrm{~mol}} & \frac{0.773 \mathrm{~mol}}{0.386 \mathrm{~mol}} \\
1 & 2 & 2
\end{array}
$$

Question 14 4 Points

Of the following three salts circle one that you might expect to be soluble in water?
CaO
NaF

$$
\mathrm{Al}_{2} \mathrm{~S}_{3}
$$

Question 15 A compound is found to contain 22.32% Vanadium (element \#23) and 77.68% chlorine. 4 Points What is the charge on the Vanadium atom?

V	Cl
22.32%	77.68%
22.32 g	22.32 g
0.438 mol	2.191 mol
$\frac{0.438 \mathrm{~mol}}{0.438 \mathrm{~mol}}$	$\frac{2.191 \mathrm{~mol}}{0.438 \mathrm{~mol}}$
1	5
Empirical Formula:	VCl_{5}

Charge: +5

