\qquad $-$ \qquad

Question 1 (6 points)

Question 2 (16 Points)

1. When aqueous solutions of zinc(II) sulfate and lead(II) nitrate are combined a precipitate results. What is the formula for the precipitate?

$$
Z n S O_{4}(a q)+\mathcal{P b}\left(\mathcal{N}\left(O_{3}\right)_{2}(a q)=Z n\left(\mathfrak{N}\left(O_{3}\right)_{2}(a q)+\mathcal{P b S} O_{4}(s)\right.\right.
$$

$$
\mathrm{PbSO}_{4}
$$

2. When aque ous solutions of copper(II) iodide and silver(I) ace tate are combined a precipitate results. What is the formula for the precipitate?
$\mathrm{CuI}_{2}(a q)+2 \mathcal{A g C H}_{3} \mathrm{CO}_{2}(a q)=2 \mathfrak{A g I}(s)+\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$

$$
\mathfrak{A g} I
$$

1. Consider the reaction when aque ous solutions of $\mathcal{N i} \mathcal{N} \mathrm{O}_{3}$ and $\mathcal{B a}(O \mathcal{H})_{2}$ are combined. The net ionic equationfor this reaction is:

$$
2 \mathfrak{N i N}\left(O_{3}(a q)+\mathcal{B a}(O \mathcal{H})_{2}(a q)=2 \mathcal{N i O \mathcal { H } (s) + \mathcal { B } a (\mathcal { N } (O _ { 3 }) _ { 2 }} \quad 2 \mathcal{N} i^{+}+2 O \mathcal{H}=2 \mathcal{N} i O \mathcal{H}(s)\right.
$$

2. Consider the reaction when aqueous solutions of sodium sulfide and copper(II) nitrate are combined. The net ionic equation for this reaction is:

$$
\mathcal{N}\left(a_{2} S(a q)+\mathcal{C u}\left(\mathcal{N}\left(O_{3}\right)_{2}(a q)=2 \mathcal{N} a \mathcal{N} O_{3}(a q)+\mathcal{C u S}(s)\right.\right.
$$

$$
\mathrm{Cu}^{2+}+\mathrm{S}^{2 \cdot}=\mathrm{CuS}(s)
$$

3. Write anet ionic equation for the reaction that occurs when aqueous solutions of $\mathcal{N} a O \mathcal{H}$ and $\mathcal{H C l}$ are combined.

$$
\mathcal{N} a O \mathcal{H}(a q)+\mathcal{H C l}(a q)=\mathcal{N} a C l(a q)+\mathcal{H}_{2} O(l)
$$

$$
\mathcal{H}^{+}+O \mathcal{H}=\mathcal{H}_{2} O(l)
$$

4. Write a net ionic equation for the reaction that occurs when aque ous solutions of $\mathcal{K O} \mathcal{H}$ and $\mathcal{H F}$ are combined.
$\mathcal{K O} \mathcal{H}(a q)+\mathcal{H} \mathcal{F}(a q)=\mathcal{K F}(a q)+\mathcal{H}_{2} O(0) \quad \mathcal{H} \mathcal{F}$ is a we ak ac id

$$
O \mathcal{H}+\mathcal{H} \mathcal{F}(a q)=\mathcal{F}+\mathcal{H}_{2} O(\mathcal{O})
$$

Question 3
(9 Points)

nitrogen in $\mathcal{N O}_{3}$? $\quad+5$
oxygen in O_{2} ?
+5
0

Question 4 (12 Points)

Question 5 (16 Points)

1. species oxidized: $\quad \mathrm{Cr}^{2+}$
2. species reduced: $\quad \mathrm{Cl}_{2}$
3. oxidizing agent: $\quad C l_{2}$
4. reducing agent: Cr^{2+}
5. During the reaction, electrons are transferred from Cr^{2+} to Cl_{2}

Identify the species oxidized, the species reduced, the oxidizing agent and the reducing agent in the following electron transfer reaction.

$$
\begin{aligned}
& C l_{2}+2 \mathrm{Cr}^{2+}=2 \mathrm{Cl}+2 \mathrm{Cr}^{3+} \\
& (0) \quad(+2) \quad(-1) \quad(+3)
\end{aligned}
$$

1. What is the comple te electron configuration for the lithium atom?

$$
1 s^{2} 2 s^{1}
$$

2. What is the comple te electron configuration for the aluminum ion?

$$
1 s^{2} 2 s^{2} 2 p^{6}
$$

3. What is the valence electron configuration for the silic on atom?

$$
3 s^{2} 3 p^{2}
$$

4. What is the valence electron configuration for the chloride ion?

$$
3 s^{2} 3 p^{6}
$$

5. A maingroup element with the valence electronconfiguration $2 s^{2} 2 p^{3}$ is in periodic group $5 \mathcal{A}$. It forms a monatomic ion with a charge of -3 .
6. A maingroup element with the valence electron configuration $2 s^{1}$ is in periodic group $1 \mathcal{A}$. It forms a monatomic ion with a charge of +1 .

Name： \qquad ID： \qquad －

Question 6 Consider the following elements：
（ 8 Points）

Consider the following elements：

$$
\mathcal{S e}, \mathcal{G e}, \mathcal{A} s, \mathcal{B r}
$$

1．Which would you expect to have the smallest atomic radius？
$\mathcal{B r}$
2．Which would you expect to be most metallic？Ge
3．Which would you expect to have the smallest ionizationenergy？Ge
4．Which would you expect to be most electronegative？ $\mathcal{B r}$

Question 7 From the Lewis diagrams of the species given，pickall of those in which the central atom （ 8 Points）obeys the octet rule．

Question $8 \quad$ DrawLewis structures for ClO_{3} and $\mathfrak{N} \mathrm{NO}^{+}$.
(8 Points)

\square
Question 9 (9 Points)

O_{3}

Question 10 (8 Points)

Ulsing ave rage bond energies estimate the enthalpy change for the following reaction:

$$
2 \mathcal{H}_{2}(\mathcal{g})+O_{2}(\mathcal{g})=2 \mathcal{H}_{2} O(\mathcal{g})
$$

$$
\begin{aligned}
\Delta \mathcal{H} & =\text { Bonds Broken }-\mathcal{B o n d s} \text { Formed } \\
& =\{2(\mathcal{H}-\mathcal{H})+(O=O)\}-\{4(O-\mathcal{H})\} \\
& =\{2(436)+(498))-\{4(464)\} \\
& =\{872+498\}-\{1856\} \\
& =-486 \mathrm{~kg}
\end{aligned}
$$

The reaction (Circle One): Exothermic Endothermic

Score:	Note:
	$\begin{aligned} & \text { 흥 훈 } \\ & \text { 毕 } \end{aligned}$

