Name:

Question 1 (9 points)

Using ave rage bond energies the enthalpy change associated with the following reaction:

$$
\mathcal{N}_{2}(g)+3 \mathcal{H}_{2}(g) \longrightarrow 2 \mathcal{N}_{3} \mathcal{H}_{3}(a q)
$$

Was determined to be -93 kJ.mol ${ }^{1}$. Lnowing that the $\Delta \mathcal{H}_{f}^{0}$ of for the elements in the ir standard state is 0 and $\Delta \mathcal{H}_{f}^{0} \mathcal{N} \mathcal{H}_{3}(a q)=-80 \mathrm{~kJ} . m o \mathcal{l}^{1}$. Using feats of formation data, determine the enthalpy change for the reaction.

$$
\begin{aligned}
\Delta \mathcal{H}_{r \chi n}^{0} & \left.=\Sigma \Delta \mathcal{H}^{0}{ }_{f}(\operatorname{Products})\right) ~ \Sigma \Delta \mathcal{H}^{0}{ }_{f}(\operatorname{Re} \operatorname{actants}) \\
& =2 \Delta \mathcal{D} \mathcal{H}^{0}{ }_{f} \mathcal{N H}_{3}(a q)-\left[\Delta \mathcal{H}_{f}^{0} \mathcal{N}_{2}(g)+3 \Delta \mathcal{H}_{f}^{0} \mathcal{H}_{2}(g)\right] \\
& =2(-80.0)-[0+3(0)] \\
& =-160 \mathrm{~kJ} \cdot \text { mol }^{1}
\end{aligned}
$$

Give a simple explanation for the difference in values obtained. Which value do you think is closer to the realvalue?

> Bond energies are averages and while they work well when all reactants and products are in the gas phase they do not take into account intermolecular forces. Enthalpies of formation do and thus they are a better estimate.

Question 2 (24 points)

For each of the following molecules give the electron-pairgeometry, the number of lone pairs around the central atom and the molecular geometry.
A. $\mathrm{CH}_{2} \mathrm{O}$

electron-pair geometry	Trigonal Planar
lone pairs	0
molecular geometry	Trigonal Planar
electron-pair geometry	Trigonal Planar
lone pairs	1
molecular geometry	Angular
electron-pair geometry	Tetrafiedron
lone pairs	I
molecular geometry	Trigonal Pyramid

D. $\mathcal{C S}_{2}$

electron-pair geometry	Line ar
lone pairs	0
moleculargeometry	Linear

Question 3 Classify each of the following molecules as Polar or \mathcal{N} (on Polar.
(8 points)

Question 4 (10 Points)

Question 5
(5 Points)
A. $\mathrm{CH}_{2} \mathrm{O} \quad$ Polar
B. ONCl Polar
C. $\mathfrak{N F}_{3} \quad$ Polar
D. $\mathrm{CS}_{2} \quad \operatorname{Non}$ Polar

Circle the intermolecular forces that are applicable to the following:
A. The solute-solvent interactions when potassium fluoride dissolves in water are primarily of the type:
dipole-induced dipole ion-dipole dipole-dipole fydrogen bonding
B. The solute-solvent interactions when $\mathcal{C l}_{2}$ dissotves in water are primarily of the type:
dipole-induced dipole ion-dipole ion-ion dipole-dipole hydrogen bonding
C. The type(s) of intermolecular forces expected between $\mathcal{H C l}$ molecules:

> dispersion ion-dipole ion-ion dipole-dipole fydrogen bonding
D. The type(s) of intermolecular forces expected between $\mathcal{C H}_{3} \mathcal{N}^{\left(\mathcal{H}_{3}\right.}$ molecules:
dispersion ion-dipole ion-ion dipole-dipole fydrogenbonding

Circle the molecule that is expected to have the figher boiling point.

$$
\begin{array}{clllll}
\mathrm{CH}_{4} & \mathrm{CH}_{3} \mathrm{OH} & \mathrm{CH}_{3} \mathrm{CH}_{3} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} & \mathrm{HH}_{3} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
\end{array}
$$

The equilibrium constant, \mathcal{K}, for the following reaction is 1.67×10^{-2} at 1180 弌

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Calculate \mathcal{K}_{6} at this temperature for:

$$
\mathrm{SO}_{2}(g)+1 / 2 O_{2}(g) \rightleftharpoons \mathrm{SO}_{3}(g)
$$

$$
\begin{aligned}
\mathcal{K}_{\mathrm{K}} & =\left\{1 / 1.67 \times 10^{-2}\right\}^{1 / 2} \\
& =7.74
\end{aligned}
$$

Question 6 (5 Points)

Consider the following reaction:

$$
2 \mathcal{N} O \mathcal{B r}(g) \rightleftharpoons 2 \mathcal{N} O(g)+\mathcal{B} r_{2}(g)
$$

If 0.580 moles of $\mathcal{N} O \mathcal{B r}(g), 0.567$ moles of $\mathcal{N} O$, and 0.446 moles of $\mathcal{B r} r_{2}$ are at equilibrium in a $10.8 \mathcal{L}$ container at $452 \mathcal{K}$ the value of the equilibrium constant

$$
\begin{aligned}
& \mathcal{K}=[\mathcal{N} O]^{2}\left[\mathcal{B r}_{2}\right] /[\mathcal{N} O \mathcal{B r}]^{2} \\
& {[\mathcal{N}(0] \quad=0.567 / 10.8=0.0525} \\
& {\left[\mathcal{B r} r_{2}\right]=0.446 / 10.8=0.0413} \\
& {[\mathfrak{N}[\mathrm{OBr}] \quad=0.580 / 10.8=0.0537} \\
& \mathcal{K}=(0.0525)^{2}(0.0413) /(0.0537)^{2}=0.0395\left(3.95 \times 10^{-2}\right)
\end{aligned}
$$

Question 7

The $\left[\mathcal{H}_{3} \mathrm{O}^{+}\right]$in an aque ous solution is $5.58 \times 10^{-3} \mathcal{M}$.
(s points)
Consider the following system at equilibrium:
$2 \mathcal{H}_{2} S(g)+3 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathcal{H}_{2} O(g)+2 \mathrm{SO}_{2}(g)$
The production of SO_{2} by this reaction would be favored by:
(Circle those that apply)
A. removing $\mathcal{H}_{2} \mathcal{S}$
B. removing $\mathcal{H}_{2} \mathrm{O}$
C. adding $\mathcal{H}_{2} \mathrm{O}$
D. adding $\mathcal{H}_{2} S$
E. adding O_{2}
A. The formula for the conjugate acid of $\mathrm{CO}_{3}{ }^{2 \cdot}$ is. $\mathcal{H C O}_{3}$
\mathcal{B}. The formula for the conjugate base of $\mathcal{H P O}{ }_{4}{ }^{2 \cdot}$ is. $\mathcal{P O}_{4}{ }^{3 .}$
C. The formula for the conjugate base of $\mathcal{H}_{3} \mathcal{P O}_{4}$ is $\quad \mathcal{H}_{2} \mathcal{P O}_{4}$
D. The formula for the conjugate acid of $\mathcal{N} \mathcal{H}_{3}$ is $\quad \mathcal{N} \mathcal{H}_{4}^{+}$

The $[O \mathcal{H}]$ in the solution is $1.78 \times 10^{-12} \mathcal{M}$.

The $p \mathcal{H}$ of this solution is 2.25 and the $p O \mathcal{H}$ is 11.75.

This solution is Acidic. (Acidic or Basic)

Question 10 Youneed to make an aque ous solution of $0.160 \mathcal{M}$ potassium bromide for an experiment
(5 points) in lab, using a 500 mL volume tric flask. How much solid potassium bromide sfould you add?

$$
\begin{aligned}
& \mathcal{M}=\text { moles } \mathcal{L B B r} / \mathcal{V}(L) \quad \text { moles } \mathcal{Z B B r}=\mathcal{M} \notin \mathcal{V}(L) \\
& \text { Moles } \mathcal{K B r}=0.160 \times 0.500=0.080 \\
& 0.080 \text { moles } \mathrm{KBBr} x(119.0 \mathrm{~g} \operatorname{KBr} / 1 \mathrm{~mole} \mathrm{KBr})=9.52 \mathrm{~g} \text { 2 } \mathrm{KBr}
\end{aligned}
$$

Question 11 According to the following reaction, howmany moles of bromine trifluoride are (6 Points) necessary to form 0.387 moles fluorine gas?

Gromine trifluoride $(g) \longrightarrow$ bromine $(g)+f$ fuorine (g)

$$
\begin{aligned}
& 2 \mathcal{B r F}_{3}(\mathcal{g})=\mathcal{B} r_{2}(g)+3 \mathcal{F}_{2}(g) \\
& 0.387 \text { moles } \mathcal{F}_{2} \text { 夭 }\left(2 \mathcal{B r} \mathcal{F}_{3} / 3 \mathcal{F}_{2}\right)=0.258 \text { moles } \mathcal{B r} \mathcal{F}_{3}
\end{aligned}
$$

Question $12 \mathcal{H o w m a n y g r a m s ~ o f ~ s o l i d ~ p o t a s s i u m ~ f y d r o x i d e ~ a r e ~ n e e d e d ~ t o ~ e x a c t l y ~ n e u t r a l i z e ~} 21.1 \mathrm{~mL}$ (7 points) of a $0.652 \mathcal{M}$ fydrocfloric acid solution? Assume that the volume remains constant.

$$
\begin{aligned}
& \mathcal{K O H}(a q)+\mathcal{H C l}(a q)=\mathcal{K C l}(a q)+\mathcal{H}_{2} O(l) \\
& \text { Moles of } \mathcal{H C l}=\mathcal{M} \times \mathcal{V}(\mathcal{L})=0.652 \times 0.0211=1.38 \times 10^{-2} \\
& 1.38 \times 10^{-2} \text { moles } \mathcal{H C l} \chi(1 \mathcal{K O H} / 1 \mathcal{H C l})=1.38 \times 10^{-2} \text { moles } \mathcal{K O H} \\
& 1.38 \times 10^{-2} \text { moles } \mathcal{K O H} \nsim(56.11 g \mathcal{K O H} / 1 \text { mole } \mathcal{H} O \mathcal{H})=0.772 \mathrm{~g} \mathcal{K O} \mathcal{H}
\end{aligned}
$$

Score:	承ote:
a	

