Question 1 12 Points	Are the following salts expected to be soluble or insoluble in water?								
12 FOINTS	1.	FeF ₃	Soluble	Insoluble	4.	$Ba(NO_3)_2$	Soluble	Insoluble	
	2.	Na ₃ PO ₄	Soluble	Insoluble	5.	FeCO ₃	Soluble	Insoluble	
	3.	NH ₄ OH	Soluble	Insoluble	6.	BaS	Soluble	Insoluble	
Question 2 12 Points	Classify each of the following substances:								
12 / 011113	1.	HF	В		A) S	strong Acid			
	2.	NaI	Е	B) Weak Acid					
	3.	NH_3	D	C) Strong Base					
	4.	HCl	ICI A D) Weak Base						
	5.	NaOH	C		E) 5	oluble Salt			
	6.	$Cr_3(PO_4)_2$	F		F) I	nsoluble Sa	l †		
Question 3 6 Points	1.	The formula fo	or the conjugat	e base of HCN:		CN⁻			
	2.	The formula fo	or the conjugat	e acid of ${\it CO_3}^{2-}$		HCO ₃ -			
Question 4 8 Points	The [H $^{+}$] in an aqueous solution is found to be $5.43\times10^{-2}M$.								
	1.	The pH of this	s solution is:	1.265					
	2.	The $[OH^{-}]$ of t	his solution is:	1.84×10 ⁻¹³					
	3.	The pOH of th	nis solution is:	12.735					
	4.	The solution is	(circle one)	Basic	Acid	lic	Neutral		
Question 5 6 Points	What is the expected pH of an aqueous solution of 0.302M hydrocyanic acid (HCN) at 25° C?								
		[H ⁺] = {Ka[Acid [H ⁺] = {4×10 ⁻¹⁰							
		[H ⁺] = 1.10×10 ⁻	5						
		pH = 4.96							

Question 6 How would the pH of a 0.302M aqueous hydrochloric acid solution compare to the 0.302M aqueous 4 Points HCN solution at the same temperature.

- 1. pH HCl(aq) > pH HCN(aq)
- 2. pH HCl(aq) < pH HCN(aq)
- 3. pH HCl(aq) = pH HCN(aq)

Question 7 6 Points

Give the net ionic equation for the following reactions:

$$OH^{-} + HNO_{2}(aq) = NO_{2}^{-} + H_{2}O(1)$$

2.
$$NH_3(aq) + HCl(aq)$$

$$NH_3(aq) + H^+ = NH_4^+$$

3.
$$HI(aq) + LiOH(aq)$$

$$H^{+} + OH^{-} = H_{2}O(I)$$

A 1L buffer solution contains 0.112M KF and 0.396M HF. Calculate the expected pH of this solution? Question 8 6 Points

[H⁺] = Ka{[Weak Acid]/[Conjugate Base]}
[H⁺] =
$$7.2 \times 10^{-4} \{0.396/0.112\}$$

 $[H^{\dagger}] = 2.54 \times 10^{-3}$

Question 9 14 Points

The addition of 0.012 moles of HBr to the buffer described in question 8 would result in:

1.	рН	Increase	Decrease	No Change
2.	[H₃O⁺]	Increase	Decrease	No Change
3.	[OH ⁻]	Increase	Decrease	No Change
4.	[F ⁻]	Increase	Decrease	No Change
5.	[HF]	Increase	Decrease	No Change
6.	[HF]/[F ⁻]	Increase	Decrease	No Change

7. The maximum amount of HCl that this buffer could withstand? ~0.112 moles

Question 10	The reaction	$H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$	has a K_c = 55.6 and a DH ⁰ =-10 kJ/mol at 696K.		
10 Points	The produ	uction of HI(g) is favor by:			
	1. Decreasir	ng the temperature.	True	False	
	2. Increasing the pressure by changing the volu		olume. True	False	
	3. Decreasir	3. Decreasing the volume.		False	
	4. Adding I2		True	False	
	5. Removing	HI	True	False	

Question 11 8 Points

An aqueous solution of **potassium hydroxide** is standardized by titration with a **0.369** M solution of **hydrobromic acid**.

If 30.5 mL of base are required to neutralize 13.4 mL of the acid, what is the molarity of the potassium hydroxide solution?

KOH + HBr = KBr +
$$H_2O$$

0.369 × 0.0305 = 1.12×10⁻² mol KOH

$$M = 1.12 \times 10^{-2} / 0.0134 = 0.839M$$

 1.12×10^{-2} mol KOK x (1 HBr/1 KOH) = 1.12×10^{-2} mol HBr

0.839M

Question 12 How many grams of solid **calcium hydroxide** are needed to exactly neutralize **27.6** mL of a **1.68** M hydrochloric acid solution? Assume that the volume remains constant.

$$Ca(OH)_2 + 2HCI = CaCI_2 + 2H_2O$$

 $1.68 \times 0.0276 = 4.63 \times 10^{-2} \text{ mol HCI}$
 $4.63 \times 10^{-2} \text{ mol HCI} \times (1 Ca(OH)_2 / 2 HCI) = 2.31 \times 10^{-2} \text{ mol } Ca(OH)_2$
 $2.31 \times 10^{-2} \text{ mol } Ca(OH)_2 \times (74.1g/1 \text{ mol}) = 1.72g Ca(OH)_2$