Question 1 Are the following salts expected to be soluble or insoluble in water? 12 Points

1. FeF_{3}	Soluble	Insoluble	4. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	Soluble	Insoluble
2. $\mathrm{Na}_{3} \mathrm{PO}_{4}$	Soluble	Insoluble	5. FeCO_{3}	Soluble	Insoluble
3. $\mathrm{NH}_{4} \mathrm{OH}$	Soluble	Insoluble	6. BaS	Soluble	Insoluble

Question 2 Classify each of the following substances:
12 Points

1. HF
B
A) Strong Acid
2. NaI
E
B) Weak Acid
3. NH_{3}
D
C) Strong Base
4. HCl
A
D) Weak Base
5. NaOH
C
E) Soluble Salt
6. $\mathrm{Cr}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
F
F) Insoluble Salt

Question 3 6 Points

1. The formula for the conjugate base of HCN :
2. The formula for the conjugate acid of CO_{3}^{2-}
$\mathrm{HCO}_{3}{ }^{-}$
Question 4 The $\left[\mathrm{H}^{+}\right]$in an aqueous solution is found to be $5.43 \times 10^{-2} \mathrm{M}$. 8 Points
3. The pH of this solution is: 1.265
4. The $\left[\mathrm{OH}^{-}\right]$of this solution is: 1.84×10^{-13}
5. The pOH of this solution is: 12.735
6. The solution is (circle one) Basic Acidic Neutral

Question 5 What is the expected pH of an aqueous solution of 0.302 M hydrocyanic acid (HCN) at $25^{\circ} \mathrm{C}$? 6 Points

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\{\mathrm{Ka}[\text { Acid }]\}^{\frac{1}{2}}} \\
& {\left[\mathrm{H}^{+}\right]=\left\{4 \times 10^{-10}(0.302)\right\}^{\frac{1}{2}}} \\
& {\left[\mathrm{H}^{+}\right]=1.10 \times 10^{-5}} \\
& \mathrm{pH}=4.96
\end{aligned}
$$

Question 6 4 Points

How would the pH of a 0.302 M aqueous hydrochloric acid solution compare to the 0.302 M aqueous HCN solution at the same temperature.

1. $\mathrm{pHHCl}(\mathrm{aq})>\mathrm{pH} H C N(a q)$
2. $\mathrm{pHHCl}(\mathrm{aq})<\mathrm{pH} H C N(a q)$
3. $\mathrm{pHHCl}(\mathrm{aq})=\mathrm{pH} H C N(a q)$

Question 7 Give the net ionic equation for the following reactions: 6 Points

1. $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{2}(\mathrm{aq})$
$\mathrm{OH}^{-}+\mathrm{HNO}_{2}(\mathrm{aq})=\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq})$
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}=\mathrm{NH}_{4}^{+}$
3. $\mathrm{HI}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq})$
$\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Question 8 A 1 L buffer solution contains 0.112 M KF and 0.396 M HF. Calculate the expected pH of this solution? 6 Points

```
\(\left[\mathrm{H}^{+}\right]=\mathrm{Ka} \mathrm{\{[ } \mathrm{Weak} \mathrm{Acid} \mathrm{]/[ } \mathrm{Conjugate} \mathrm{Base} \mathrm{]} \mathrm{\}}\)
\(\left[\mathrm{H}^{+}\right]=7.2 \times 10^{-4}\{0.396 / 0.112\}\)
\(\left[\mathrm{H}^{+}\right]=2.54 \times 10^{-3}\)
\(\mathrm{pH}=2.59\)
```

Question 9 The addition of 0.012 moles of HBr to the buffer described in question 8 would result in: 14 Points

1. pH	Increase	Decrease	No Change
2. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	Increase	Decrease	No Change
3. $\left[\mathrm{OH}^{-}\right]$	Increase	Decrease	No Change
4. $\left[\mathrm{FF}^{-}\right]$	Increase	Decrease	No Change
5. $[\mathrm{HF}]$	Increase	Decrease	No Change
6. $[\mathrm{HF}] /\left[\mathrm{F}^{-}\right]$	Increase	Decrease	No Change

7. The maximum amount of HCl that this buffer could withstand? ~ 0.112 moles

Question 10 The reaction $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g}) \quad$ has a $\mathrm{K}_{\mathrm{c}}=55.6$ and a $\mathrm{DH}^{0}=-10 \mathrm{~kJ} / \mathrm{mol}$ at 696 K .

10 Points

1. Decreasing the temperature.
2. Increasing the pressure by changing the volume.
3. Decreasing the volume.
4. Adding I_{2}
5. Removing HI The production of $\mathrm{HI}(\mathrm{g})$ is favor by:

1. Decreasing the temperature.	True	False
2. Increasing the pressure by changing the volume.	True	False
3. Decreasing the volume.	True	False
4. Adding I_{2}	True	False
5. Removing HI	True	False

Question 11 An aqueous solution of potassium hydroxide is standardized by titration with a 0.369 M solution of 8 Points hydrobromic acid.
If 30.5 mL of base are required to neutralize 13.4 mL of the acid, what is the molarity of the potassium hydroxide solution?

$$
\begin{gathered}
\mathrm{KOH}+\mathrm{HBr}=\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O} \\
0.369 \times 0.0305=1.12 \times 10^{-2} \mathrm{~mol} \mathrm{KOH} \\
1.12 \times 10^{-2} \mathrm{~mol} \mathrm{KOK} \times(1 \mathrm{HBr} / 1 \mathrm{KOH})=1.12 \times 10^{-2} \mathrm{~mol} \mathrm{HBr}
\end{gathered}
$$

$$
M=1.12 \times 10^{-2} / 0.0134=0.839 \mathrm{M}
$$

Question 12 8 Points

How many grams of solid calcium hydroxide are needed to exactly neutralize 27.6 mL of a 1.68 M hydrochloric acid solution? Assume that the volume remains constant.

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl}=\mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
1.68 \times 0.0276=4.63 \times 10^{-2} \mathrm{~mol} \mathrm{HCl} \\
4.63 \times 10^{-2} \mathrm{~mol} \mathrm{HCl} \times\left(1 \mathrm{Ca}(\mathrm{OH})_{2} / 2 \mathrm{HCl}\right)=2.31 \times 10^{-2} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \\
2.31 \times 10^{-2} \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times(74.1 \mathrm{~g} / 1 \mathrm{~mol})=1.72 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}
\end{gathered}
$$

