Question 1 Draw the Lewis Dot Structure for each of the following molecules?
12 Points

Question 2 Ozone, O_{3}, has two resonance structures. Draw them?
8 Points

Structure 1		Structure 2
	Ö=Ö-Ö:	:Ö-Ö=Ö:

What is the O-O Bond Order in Ozone? 1.5

Question 3 Which of the following will lead to a reaction that is very highly exothermic. (Circle the correct one)
a. Weak bonds broken in the reactants + strong bonds formed in the products.
b. Strong bonds broken in the reactants + strong bonds formed in the products.
c. Strong bonds broken in the reactants + weak bonds formed in the products.
d. Weak bonds broken in the reactants + weak bonds formed in the products.

Question 4 The questions below relate to the following Lewis Dot Structure:
10 Points

a. What is the formal charge on the chlorine atom? +2
b. What is the formal charge on the oxygen atoms? -1
c. What is the overall charge on the molecule? -1
d. How might you go about reducing the formal charges on the atoms of this molecule?
By making two $\mathrm{Cl}: \mathrm{O}$ double bonds, this would make Cl have a formal charge of 0 , two of the oxygen's 0 and the third oxygen -1
e. Why would you be reluctant to do this?

Halides in general do not form multiple bonds ... (CNOPS)
Question 5 The molecule $S_{C N}$, in which carbon is the central atom has three possible resonance structures. Draw them?

a. One of the resonance structures is not reasonable and may be eliminated. Which one can be eliminated? Circle the structure number.
b. Given the following average bond energies in $\mathrm{kJ.mol}^{-1}$ for $C: \mathrm{N}$ bonds C-N 293
$C=N 615$
$C \equiv N 891$
What would be your estimate of the CN bond energy in SCN ${ }^{-}$In the 700's

Question 6 The questions that follow relate to the following Lewis Dot Structures. 14 Points

		6

a. What is the Electron Pair Geometry Of: 1 Trigonal planar

4 Trigonal planar
5 Tetrahedral
b. What is the Molecular Geometry of:

See-saw

3 T-shaped

6
Linear
c. Which (if any) of the molecules are non-polar

5 and 6

Question 7 A hypothetical molecule AX_{4} molecule if found to be very soluble in carbon tetrachloride 4 Points $\left(\mathrm{CCl}_{4}\right)$ and very insoluble in dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$A X_{4}$ is probably
Polar
Nonpolar

Briefly justify your choice?
CCl_{4} is a nonpolar and since AX_{4} is very soluble in it is most likely nonpolar as well.

Question 8 The molecular geometry of Tylenol is depicted below:

Tylenol

a. Give the bond angles about 1,2 and 3 .

1. 109
2. 109
3. 120
b. The sigma bond between the carbon atom labeled 4 and the oxygen atom labeled 4 is due to the overlap of what 2 orbitals
$C: \quad s p^{2}$
O: $\quad s p^{2}$
c. The sigma bond between the carbon atom labeled 5 and the hydrogen atom labeled 5 is due to the overlap of what 2 orbitals
$C: s p^{2} \quad H: \quad$ 1s
d. The sigma bond between the carbon atom labeled 6 and the oxygen atom labeled 6 is due to the overlap of what 2 orbitals
$C: \quad s p^{2}$
O: $\quad s p^{3}$

Question 9 Covalent molecules with a period 3 or greater element in the center can accommodate
4 Points more than eight electrons. Why is this?

Those pesky unfilled d orbitals!

Question 10
6 Points
a. Consider the depiction of a surfactant molecule. The long part is a hydrophobic (nonpolar) hydrocarbon chain and the "head group" is polar. Sketch how these molecules would form a micelle when dissolved in methanol, $\mathrm{CH}_{3} \mathrm{OH}$.

Polar Nonpolar

Looking for a sphere in which the heads of the molecule are on the outside and the tails are all inside. $\mathrm{CH}_{3} \mathrm{OH}$ is a polar solvent.
b. Which of the following would you expect to dissolve extensively in water? Circle all that apply.

$$
\begin{array}{lllll}
\mathrm{CHCl}_{3} & \mathrm{CH}_{2} \mathrm{Cl}_{2} & \mathrm{CHCl}_{3} & \mathrm{CCl}_{4} & \mathrm{I}_{2}
\end{array}
$$

Question 11 Give the correct formula for each of the following ionic compounds.
7 Points
a. Magnesium sulfite

$$
\mathrm{MgSO}_{3}
$$

b. Iron(III) dichromate

$$
\mathrm{Fe}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3}
$$

c. Cobalt(II) chromate
CoCrO_{4}
d. Potassium permanganate
KMnO_{4}
e. Sodium sulfate
$\mathrm{Na}_{2} \mathrm{SO}_{4}$
f. Aluminum nitrite
$\mathrm{Al}\left(\mathrm{NO}_{2}\right)_{3}$
g. Ammonium perchlorate
$\mathrm{NH}_{4} \mathrm{ClO}_{4}$

