Question 1 A piece of copper has a mass of 770 kg. Using dimensional analysis and the conversion 6 Points data given below, what is the volume of the sample, in units of liters?

> $1 \text{ cm}^3 \text{ Cu} = 8.8 \text{ g Cu}$ 1 kg = 1000g $1L = 1000 \text{ cm}^3$

9.5x10²¹ atoms Cu = 1 g Cu $1 \text{ cm}^3 = 1 \text{ mL}$

$$\frac{770 \text{ kg } \text{Cu}}{1 \text{ kg}} = 770,000 \text{ g } \text{Cu}$$

$$\frac{770,000 \text{ g } \text{Cu}}{8.8 \text{ g } \text{Cu}} = 87,500 \text{ cm}^3 \text{ Cu}$$

$$\frac{87,500 \text{ cm}^3 \text{ Cu}}{1 \text{ L}} = 87.5 \text{ L } \text{Cu}$$

$$1,000 \text{ cm}^3$$
 =

Question 2 What is the charge of the ions formed from: (Give both magnitude and sign.) 4 Points

Al	+3	5	-2
Cl	-1	Mg	+2

Question 3 Fill in the blanks in the following table:

4 Points

Protons	Neutrons	Electrons	Complete Atomic Symbol
21	24	20	⁴⁵ ₂₁ Sc⁺
17	18	18	³⁵ Cl⁻ or ³⁵ ₁₇ Cl⁻

Question 4 Classify each of the following elements as: 8 Points

Pick the most appropriate from the following: Metal, Non Metal, Halide, Noble Gas, Alkali Metal, Alkali Earth Metal, Transition Metal, Lanthanide or Actinide.

Element Number 4	Alkali Earth Metal	Element Number 18	Noble Gas
35	Halide	24	Transition Metal
13*	Metal	19	Alkali Metal
8	Non Metal	60	Lanthanide

* Element number 13 when it reacts becomes a cation (likes to loose electrons)

Question 5Bromine (Br) has two naturally occurring isotopes:4 PointsIsotopeExact MassNatural Abundance79 Br78.91833650.69%81 Br80.91629049.31%What is the average atomic mass of Br?

78.918336(0.5069) + 80.916290(0.4931) = 79.903527

Question 6 A sample of cinnamaldehyde, C_9H_8O , contains 0.178 mol of the compound. What is the mass of this sample in grams?

9(12.01) + 8(1.01) + 16.00 = 132.17 g.mol⁻¹

 $\frac{0.178 \text{ mol } C_9H_8O}{1 \text{ mol}} = 23.53g$

Question 7 4 Points	Analysis of a compound found it N 18.888% Mg What is the empirical formula of	0	64.727%		
	Ν	Mg		0	
	18.888g	16.388g		64.727g	
	1.348 mol	0.674 mol		4.045 mol	
	2.000	1.000		6.001	
		N₂MgO₀			

Question 8 Using the smallest whole number integers possible, balance the following chemical equations.

- 1. $CH_4 + 2 O_2 = 2 H_2O + CO_2$
- 2. $2 \text{ AgNO}_3 + K_2 CrO_4 = Ag_2 CrO_4 + 2 KNO_3$
- **3**. 2 CH₃OH + 3 O₂ = 4 H₂O + 2 CO₂

Question 9 A chemical reaction can be initiated by light that carries energy of 385 kJ.mol⁻¹. Only ^{6 Points} light less than a certain wavelength will initiate the reaction.

What is the longest wavelength, in meters, that can deliver the required energy?

385,000 J.mol⁻¹ 6.3922×10⁻¹⁹ J v = 9.647×10¹⁴ s⁻¹ λ = 3.107×10⁻⁷ m

Question 10 Give the correct name for each of the following ionic compounds. ^{8 Points}

	1.	AICI ₃	Aluminum chloride	5.	Li ₂ HPO ₄	Lithium hydr	ogen phosphat	te
	2.	BaI ₂	Barium iodide	6.	Cu(CN) ₂	Copper(II) c	yanide	
	3.	Fe(OH)₃	Iron(III) hydroxide	7.	Cr(NO ₂) ₂	(NO ₂) ₂ Chromium(II) nitrite		
	4.	(NH ₄) ₂ SO ₄	Ammonium sulfate	8.	KNO ₃	Potassium nit	rate	
Question 11 6 Points	a. b.	the right? (s,	rincipal quantum			×	r2ψ2	(a ₀)
	C.	What is the s this orbital?	pecific designation for 2p		Boundary Surface		y Dot Picture	

Question 12Which of the following orbital designations are solutions to the Schrodinger Equation.5 Points[Check those that apply]

8s 4p 2d 4f 1p

Question 13 Give the Complete Electronic Configuration (Spectroscopic Notation) for the following: 6 Points

- 1. O $1s^22s^22p^4$
- 2. P $1s^22s^22p^63s^23p^3$
- 3. Br 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁵

Question 14 Give the Noble Gas Electronic Configuration for the following: 6 Points

- 1. Fe [Ar] $4s^23d^6$
- 2. I [Kr]5s²4d¹⁰5p⁵
- 3. Cu [Ar]4s¹3d¹⁰
- Question 15 Which of the following elements are paramagnetic? ^{5 Points} [Check those that are]

B N Zn Sc Mg

- Question 16 Give the Noble Gas Electronic Configurations for the following ions. 6 Points
 - 1. Br [Kr] or $[Ar]4s^23d^{10}4p^6$
 - 2. Co²⁺ [Ar]3d⁷
 - 3. Na⁺ [Ne]
- Question 17 An unknown metal X, that contains no d or f electrons, reacts with oxygen to form a compound whose empirical formula is X₂O₃. Answer the following questions with regards to X.
 - How many valence electrons does X have?
 What group in the periodic table does X belong to?
 - 3. What type of orbitals does X loose its electrons from? s & p

Question 18 Consider the four elements, Be, Ca, Mg and Sr. Which of these has: 6 Points

- 1. The greatest atomic radius: Sr
- 2. The largest first ionization energy: Be
- 3. The smallest electron affinity: Sr